
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Dmytro Chibisov
Sandeep Sadanandan

Winter Semester 2007/08
Solution Sheet 3

November 08, 2007

Fundamental Algorithms

Problem 1 (5 Points)
Consider the definitions of o and ω given below.

f(n) = o(g(n)) iff limn→∞

f(n)
g(n)

= 0

f(n) = ω(g(n)) iff limn→∞

f(n)
g(n)

= ∞

From these definitions, derive the definitions of o and ω which were given in the class.
(Just give an intuitive explanation)

Solution
f(n) = o(g(n)) iff limn→∞

f(n)
g(n)

= 0

This intuitively says that, as n approaches infinity, the function f(n) becomes relatively
insignificant, compared to the value of g(n). This means, there exists a certain number n0,
after which even a small fraction of g(n) is very large compared to f(n). More formally:
For a positive constant c > 0, there exists a constant n0 > 0 such that f(n) < c · g(n) for
all n ≥ n0.
The above definition happens to be the one given in class. A similar arguement is valid
for ω also.

Problem 2 (10 Points)
Let f(n) and g(n) be asymptoticallly positive functions. Prove or disprove the following.

1. f(n) = O(g(n)) implies g(n) = O(f(n))

2. f(n) = O(g(n)) implies lg f(n) = O(lg g(n)). Assume lg g(n) > 0 and f(n) ≥ 1 for
all sufficiently large n.

3. f(n) = O(g(n)) implies 2f(n) = O(2g(n))

4. f(n) = O(g(n)) imples g(n) = Ω(f(n))

Solution

1. f(n) = O(g(n)) implies g(n) = O(f(n))

f(n) = O(g(n)) means g(n) grows faster than f(n). It cannot imply that f(n) grows
faster than g(n). Hence not true.



2. f(n) = O(g(n)) implies lg f(n) = O(lg g(n)). Assume lg g(n) > 0 and f(n) ≥ 1 for
all sufficiently large n.

True. If g(n) grows faster than f(n), lg g(n) grows faster than f(n).

3. f(n) = O(g(n)) implies 2f(n) = O(2g(n))

True. Explanation for the previous one is applicable here too.

4. f(n) = O(g(n)) imples g(n) = Ω(f(n))

True. f(n) = O(g(n)) means g(n) grows faster than f(n). It implies that g(n) grows
faster than f(n). Hence true.

Problem 3 (10 Points)
Prove or disprove the following

1. o(f(n)) ∩ ω(f(n)) = φ

2. O(f(n)) − O(f(n)) = 0

Solution

1. o(f(n)) ∩ ω(f(n)) = φ

o(f(n)) = {all functions which grow strictly slower than f(n)}.

ω(f(n)) = {all functions which grow strictly faster than f(n)}.

Their intersection must be all the functions which grows faster and slower than f(n)
simultaneously. Since there are no such functions in o(f(n)) and ω(f(n)), it is φ.

2. O(f(n)) − O(f(n)) = 0

Each O symbol represents a different approximate quantity. Since the LHS may be
(f(n) − (−f(n)) = 2f(n), the best we can say is O(f(n)) − O(f(n)) = O(f(n)).

Problem 4 (15 Points)
Fill in the cells of the following table with “yes” or “no”, depending on the relationships
of functions f(n) and g(n). Other variables: k ≥ 1, ǫ > 0, c > 1 and m > 1 are constants.

f(n) g(n) O o Ω ω Θ

lgk n nǫ

nk cn

2n 2
n

2

nlg m mlgn

lg(lg∗ n) lg∗(lg n)

2



Note: lg∗ is called the iterative logarithm function. It is defined as the number of successive
applications of lg function on a given positive number n, until it reduces to 1.
Example: lg∗ 16.

lg 16 = 4

lg 4 = 2

lg 2 = 1

Here 3 calls of the function lg were possible before n reduced to 1. Hence, lg∗ 16 = 3.

Solution

f(n) g(n) O o Ω ω Θ Hint

lgk n nǫ yes yes d
dx

ln u = 1
u

du
dx

nk cn yes yes d
dx

cu = cu du
dx

2n 2
n

2 yes yes
nlg m mlgn yes 2lg n·lg m = 2lg m·lg n

lg(lg∗ n) lg∗(lg n) yes yes if lg∗ n = k, lg k = O(k − 1)

Problem 5 (10 Points)
Write down the contents of the following arrays after every step of selection sort until they
are completely sorted. Assume that the arrays given represent their initial arrangement of
the numbers. Also compute the number of operations needed. (Comparison and Swapping
are the operations)

1. 12 8 -2 23 5 0

2. 31 17 29 11 7 5 3

Solution
Selection Sort: In selection sort, one finds out the smallest element of the array and
swaps that one with the first element of the array. After this step, as the smallest is already
in it’s correct position, one focuses on the rest of the array. The next smallest element is
found out and then swapped with the second element of the array. Now, as the second
element is in it’s correct postion, the process continues with the rest of the array. And so
on, until the whole array is sorted.
For finding out the smallest element, we need to do O(n) comparisons, and we need to do
this n times, which gives us a total complexity of O(n2).

1. 12 8 -2 23 5 0

The steps are

(a) Initial State 12 8 -2 23 5 0

(b) After 5 comparisons and 1 swap -2 8 12 23 5 0

(c) After 4 comparisons and 1 swap -2 0 12 23 5 8

3



(d) After 3 comparisons and 1 swap -2 0 5 23 12 8

(e) After 2 comparisons and 1 swap -2 0 5 8 12 23

(f) After 1 comparison and 0 swaps -2 0 5 8 12 23

2. 31 17 29 11 7 5 3

The steps are

1. Initial State 31 17 29 11 7 5 3

2. After 6 comparisons and 1 swap 3 17 29 11 7 5 31

3. After 5 comparisons and 1 swap 3 5 29 11 7 17 31

4. After 4 comparisons and 1 swap 3 5 7 11 29 17 31

5. After 3 comparisons and 0 swap 3 5 7 11 29 17 31

6. After 2 comparisons and 1 swap 3 5 7 11 17 29 31

7. After 1 comparison and 0 swaps 3 5 7 11 17 29 31

4


