Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Dmytro Chibisov
Sandeep Sadanandan

Winter Semester 2007/08
Solution Sheet 6
November 30, 2007
$\qquad$

## Fundamental Algorithms

## Problem 1 (10 Points)

A binary tree is full if all of its vertices have either zero or two children. Let $B_{n}$ denote the number of full binary trees with $n$ vertices.

1. By drawing out all full binary trees with 3,5 , or 7 vertices, determine the exact values of $B_{3}, B_{5}$, and $B_{7}$. Why have we left out even numbers of vertices, like $B_{4}$ ?
2. For general $n$, derive a recurrence relation for $B_{n}$.

## Solution

1. By drawing out all full binary trees with 3,5 , or 7 nodes, determine the exact values of $B_{3}, B_{5}$, and $B_{7}$. Why have we left out even numbers of vertices, like $B_{4}$ ?
The figure shows all the full binary trees with 3,5 or 7 nodes. The the number of trees are 1,2 and 5 respectively.

There are no even number of nodes because, a tree with even number of nodes cannot be a full tree.

$$
B_{3}=1
$$



$$
B_{5}=2
$$



$$
B_{7}=5
$$


2. For general $n$, derive a recurrence relation for $B_{n}$.

$$
B_{n}= \begin{cases}2\left(B_{n-2}+B_{n-4} B_{3}+\ldots+B_{\left\lceil\frac{n}{2}\right\rceil} B_{\left\lfloor\frac{n}{2}\right\rfloor-1}\right) & \text { if } n=4 k+1 \\ 2\left(B_{n-2}+B_{n-4} B_{3}+\ldots+B_{\left\lfloor\frac{n}{2}\right\rfloor} B_{\left\lfloor\frac{n}{2}\right\rfloor}\right)-B_{\left\lfloor\frac{n}{2}\right\rfloor} B_{\left\lfloor\frac{n}{2}\right\rfloor} & \text { if } n=4 k+3\end{cases}
$$

## Problem 2 (10 Points)

Review all the sort algorithms taken in the class. Compare their complexities. If possible, try to explain them with day-to-day examples.

Prove that the lower bound for sorting is $n \lg n$

Solution

| Sort | Average | Best | Worst | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| Bubble sort | $n^{2}$ | $n^{2}$ | $n^{2}$ |  |
| Selection sort | $n^{2}$ | $n^{2}$ | $n^{2}$ |  |
| Insertion sort | $n^{2}$ | $n$ | $n^{2}$ | In best case, insert requires constant time |
| Merge sort | $n \lg n$ | $n \lg n$ | $n \lg n$ |  |
| Heap sort | $n \lg n$ | $n \lg n$ | $n \lg n$ |  |
| Quick sort | $n \lg n$ | $n \lg n$ | $n^{2}$ |  |

## Proof:

For an input of size $n$, the decision tree has $n$ ! leaves. Which leaves the tree with a height $h \geq \lg (n!)$

$$
\begin{aligned}
h & \geq \lg (n!) \\
& \geq \lg \left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right) \\
& =\frac{n}{2}(\lg (n)-1) \\
& \geq\left(\frac{n}{4}\right) \lg n
\end{aligned}
$$

## Problem 3

Stacks and Queues.

1. Write pseudo code for push(x), pop(), add(x), delete().
2. How can one simulate a queue with two stacks! (no counting)

What is a circular queue?

## Solution

1. Stack
\#define STACKSIZE 1000
unsigned int stack[STACKSIZE];
int top;
void push(int data)
```
{
if (top < STACKSIZE)
    stack[top++] = data;
    else
    printf("Stack Full");
}
int pop()
{
        if(top != 0)
    return stack[--top];
        else
            print("Stack Empty");
        return -1;
}
```

2. Simulate Queue with Stacks
```
stack Stack1, Stack2;
void add(int data)
{
    Stack1.push(data);
}
int del()
{
    while possible to pop from Stack1
        {
            Stack2.push(Stack1.pop());
        }
        return Stack2.pop();
        while possible to pop from Stack2
        {
            Stack1.push(Stack2.pop());
        }
}
```

3. Circular Queue

A circular queue is a queue which has a maximum capacity at a givem point of time. It acts as if its head and tail are connected.
It is usually implemented with a normal array. Once the head/tail reaches the end of the array, the count starts again from the beginning.

## Problem 4

Design the functions insert (data), search(data) and delete(data) in a binary search tree - Recursively.

Compare the complexity with the iterative implementations.

## Solution

1. insert(data)
```
node * insert(node * tree, int data)
{
    if(tree == NULL)
    return newnode(data);
    if (data < tree->data)
        tree->left = insert(tree->left, data);
    if (data > tree->data)
            tree->right = insert(tree->right, data);
    if (data == tree->data)
            tree->count++;
    return tree;
}
```

2. search(data) is exactly like insert (data) - so, left as exercise.
3. delte(data)
```
void delete(node * tree, node * vater, int data)
{
    if (tree == NULL)
        return; // nothing to delete
    if(data < tree->data)
    { // happens to be in the left tree
        delete(tree->left, tree, data);
    }
    if(data > tree->data)
    { // let's delete it from the right subtree.
        delete(tree->right, tree, data);
    }
    // now we are on the tree NODE to be deleted.
    if(tree == vater) // happens to be the root node.
        if(isleaf(tree)) // the only node in the tree
```

```
    {
        free(tree);
                                return ;
}
else
{
    if(isleaf(tree))
    {
        if(vater->left == tree)
        vater->left = NULL;
        else // if (vater->right == tree)
            vater->right = NULL;
        return;
}
    // if tree has only one child, we can replace tree by it's kid.
    if((onlykid = single_kid(tree)) != NULL)
    {
        if(vater->left == tree)
    vater->left = onlykid;
        else // if (vater->right == tree)
            vater->right = onlykid;
        return;
    }
}
// not a leaf, nor the father of only one child -
// hence replace tree with leftmost child of right child or
// rightmost child of left child
// random == 1 --> left child's rightmost child and
// random == 2 --> right child's leftmost child
random = replace(tree, vater); // does the random replacement.
if(random == 1)
    delete(tree->left, tree, data);
else // (random == 2)
    delete(tree->right, tree, data);
}
```

The number of recursive calls is the same as the number of iterations in the iterative loops. Hence the complexities of both the methods are the same. And it is $O(\lg n)$, where $n$ is the number of nodes in the tree.

