
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Dmytro Chibisov
Sandeep Sadanandan

Winter Semester 2007/08
Solution Sheet 6

November 30, 2007

Fundamental Algorithms

Problem 1 (10 Points)

A binary tree is full if all of its vertices have either zero or two children. Let B
n

denote
the number of full binary trees with n vertices.

1. By drawing out all full binary trees with 3, 5, or 7 vertices, determine the exact
values of B3, B5, and B7. Why have we left out even numbers of vertices, like B4?

2. For general n, derive a recurrence relation for B
n
.

Solution

1. By drawing out all full binary trees with 3, 5, or 7 nodes, determine the exact values
of B3, B5, and B7. Why have we left out even numbers of vertices, like B4?

The figure shows all the full binary trees with 3, 5 or 7 nodes. The the number of
trees are 1, 2 and 5 respectively.

There are no even number of nodes because, a tree with even number of nodes
cannot be a full tree.



B3 = 1

x

x x

B5 = 2

x

x

x x

x

x

x x

x x

B7 = 5

x

x

x

x x

x

x

x

x x

x x

x x

x

x

x x

x

x x

x

x

x x

x x

x

x

x x

x

x x

x

2. For general n, derive a recurrence relation for B
n
.

B
n

=







2
(

B
n−2 + B

n−4B3 + . . . + B⌈n

2
⌉B⌊n

2
⌋−1

)

if n = 4k + 1

2
(

B
n−2 + B

n−4B3 + . . . + B⌊n

2
⌋B⌊n

2
⌋

)

− B⌊n

2
⌋B⌊n

2
⌋ if n = 4k + 3

Problem 2 (10 Points)

Review all the sort algorithms taken in the class. Compare their complexities. If possible,
try to explain them with day-to-day examples.

Prove that the lower bound for sorting is n lg n

2



Solution
Sort Average Best Worst Remarks
Bubble sort n2 n2 n2

Selection sort n2 n2 n2

Insertion sort n2 n n2 In best case, insert requires constant time
Merge sort n lg n n lg n n lg n

Heap sort n lg n n lg n n lg n

Quick sort n lg n n lg n n2

Proof:

For an input of size n, the decision tree has n! leaves. Which leaves the tree with a height
h ≥ lg(n!)

h ≥ lg(n!)

≥ lg

(

(n

2

)
n

2

)

=
n

2
(lg(n) − 1)

≥
(n

4

)

lg n

Problem 3

Stacks and Queues.

1. Write pseudo code for push(x), pop(), add(x), delete().

2. How can one simulate a queue with two stacks! (no counting)

What is a circular queue?

Solution

1. Stack

#define STACKSIZE 1000

unsigned int stack[STACKSIZE];

int top;

void push(int data)

3



{

if (top < STACKSIZE)

stack[top++] = data;

else

printf("Stack Full");

}

int pop()

{

if(top != 0)

return stack[--top];

else

print("Stack Empty");

return -1;

}

2. Simulate Queue with Stacks

stack Stack1, Stack2;

void add(int data)

{

Stack1.push(data);

}

int del()

{

while possible to pop from Stack1

{

Stack2.push(Stack1.pop());

}

return Stack2.pop();

while possible to pop from Stack2

{

Stack1.push(Stack2.pop());

}

}

3. Circular Queue

A circular queue is a queue which has a maximum capacity at a givem point of time.
It acts as if its head and tail are connected.

It is usually implemented with a normal array. Once the head/tail reaches the end
of the array, the count starts again from the beginning.

4



Problem 4

Design the functions insert(data), search(data) and delete(data) in a binary search
tree – Recursively.

Compare the complexity with the iterative implementations.

Solution

1. insert(data)

node * insert(node * tree, int data)

{

if(tree == NULL)

return newnode(data);

if (data < tree->data)

tree->left = insert(tree->left, data);

if (data > tree->data)

tree->right = insert(tree->right, data);

if (data == tree->data)

tree->count++;

return tree;

}

2. search(data) is exactly like insert(data) - so, left as exercise.

3. delte(data)

void delete(node * tree, node * vater, int data)

{

if (tree == NULL)

return; // nothing to delete

if(data < tree->data)

{ // happens to be in the left tree

delete(tree->left, tree, data);

}

if(data > tree->data)

{ // let’s delete it from the right subtree.

delete(tree->right, tree, data);

}

// now we are on the tree NODE to be deleted.

if(tree == vater) // happens to be the root node.

if(isleaf(tree)) // the only node in the tree

5



{

free(tree);

return ;

}

else

{

if(isleaf(tree))

{

if(vater->left == tree)

vater->left = NULL;

else // if (vater->right == tree)

vater->right = NULL;

return;

}

// if tree has only one child, we can replace tree by it’s kid.

if((onlykid = single_kid(tree)) != NULL)

{

if(vater->left == tree)

vater->left = onlykid;

else // if (vater->right == tree)

vater->right = onlykid;

return;

}

}

// not a leaf, nor the father of only one child -

// hence replace tree with leftmost child of right child or

// rightmost child of left child

// random == 1 --> left child’s rightmost child and

// random == 2 --> right child’s leftmost child

random = replace(tree, vater); // does the random replacement.

if(random == 1)

delete(tree->left, tree, data);

else // (random == 2)

delete(tree->right, tree, data);

}

The number of recursive calls is the same as the number of iterations in the iterative
loops. Hence the complexities of both the methods are the same. And it is O(lg n), where
n is the number of nodes in the tree.

6


