
Last Week: Compiler Lemma
If (e, m)−→a n then
(compa e, [], m)−→m* ([], [n], m).
If (e, m)−→a b then
(compb e, [], m)−→m* ([], [WRAP b], m).

Booleans: TRUE 7→ 1; FALSE 7→ 0
We had to generalise over all stacks s.
We only considered a small subset of the machine.

Munich, 7 May 2009 – p. 1/9

A Machine
... has a stack, a single register and memory
runs a list of instructions

datatype instr =
JMPF "nat" jump forward n steps, if reg. is False
| JMPB "nat" backward n steps
| FETCH "loc" move memory to top of stack
| STORE "loc" pop top of stack to memory
| PUSH "nat" push to stack
| POP stack to register
| SET "nat" set register
| OPU "nat⇒ nat" pop one from stack and apply f
| OPB "nat⇒ nat⇒ nat" pop two from stack and apply f

Munich, 7 May 2009 – p. 2/9

A Machine
Last week we had “linear” programs and therefore
used a simplified machine

inductive
step ("’(_,_,_’)−→m ’(_,_,_’)")

where
"(PUSH n#p, s, m)−→m (p, n#s, m)"
| "(FETCH l#p, s, m)−→m (p, m l#s, m)"
| "(OPU f#p, n#s, m)−→m (p, f n#s, m)"
| "(OPB f#p, n1#n2#s, m)−→m (p, f n2 n1#s, m)"

Munich, 7 May 2009 – p. 3/9

Behaviour of the “full” machine
inductive
step2 ("’(_,_,_,_,_’)−→m ’(_,_,_,_,_’)")

where
"(PUSH n#p, q, r, s, m)−→m (p, PUSH n#q, r, n#s, m)"
| "(FETCH l#p, q, r, s, m)−→m (p, FETCH l#q, r, m l#s, m)"
| "(OPU f#p, q, r, n#s, m)−→m (p, OPU f#q, r, f n#s, m)"
| "(OPB f#p, q, r, n1#n2#s, m)−→m (p, OPB f#q, r, f n2 n1#s, m)"
| "(POP#p, q, r, n#s, m)−→m (p, POP#q, n, s, m)"
| "(SET n#p, q, r, s, m)−→m (p, SET n#q, n, s, m)"
| "(STORE x#p, q, r, n#s, m)−→m (p, STORE l#q, r, s, m(x:=n))"
| "(JMPF i#p, q, Suc 0, s, m)−→m (p, JMPF i#q, Suc 0, s, m)"
| "i≤length p =⇒

(JMPF i#p, q, 0, s, m)
−→m (drop i p, (rev (take i p))@(JMPF i#q), 0, s, m)"

| "i≤length q =⇒
(JMPB i#p, q, r, s, m)
−→m ((rev (take i q))@(JMPB i#p), drop i q, r, s, m)"

Munich, 7 May 2009 – p. 4/9

fun
compc :: "cmd⇒ instr list"

where
"compc SKIP = []"
| "compc (x::=a) = (compa a) @ [STORE x]"
| "compc (c1;c2) = compc c1 @ compc c2"
| "compc (IF b THEN c1 ELSE c2) =

(compb b) @ [POP] @
[JMPF (length(compc c1) + 2)] @ compc c1 @
[SET 0, JMPF (length(compc c2))] @ compc c2"
| "compc (WHILE b DO c) =

(compb b) @ [POP] @
[JMPF (length(compc c) + 1)] @ compc c @
[JMPB (length(compc c)+length(compb b) + 2)]"

Munich, 7 May 2009 – p. 5/9

Compiler Lemma
for Commands

If (e, m)−→c m’ then ∃ r’
(compc e, [], r,[], m)−→m*

([], rev (compc e), r’,[], m’).

We need to prove: If (e, m)−→c m’ then ∃ r’
(compc e, q, r, s, m)−→m*

([], rev (compc e)@q, r’, s, m’).

The content of the register is determined by the
program (therefore ∃ r’).

Munich, 7 May 2009 – p. 6/9

What Have We Achieved?
I caught an “off-by-one” error in the compiler
function and a “copy-paste” error in the machine
definition.
We can “play-around” with the formalisation.

The language is very simple: no problems with null
pointers.
The language makes essentially no promises (we
are completely on our own).
No local variables.

Munich, 7 May 2009 – p. 7/9

Current Research
Scaling the reasoning to real languages (they have
for example garbage collectors)
Reasoning about languages with binders

t ::= x | t1 t2 | λx.t
The last constructor represents a function which
takes one argument.

(λx.λy.x + y) 2 3 −→ 2 + 3

In general
(λx.t) t′ −→ t[x := t′]

Munich, 7 May 2009 – p. 8/9

Current Research
Design languages that make “promises”

For example, if the compiler accepts the program,
it will never crash during run-time.

This needs expressive type-systems.
There is a tentions about what you can decide at
compile-time and what you have to check at
run-time (for example out-of-bounds errors).

Munich, 7 May 2009 – p. 9/9

