
Title

Ferienakademie im Sarntal — Course 2
Distance Problems: Theory and Praxis

Nesrine Damak

Fakultät für Informatik
TU München

20. September 2010

Nesrine Damak: Classical Shortest-Path Algorithms 1/ 35

Outline

1 Introduction
Definitions
The Shortest Path Problem

2 Single-Source Shortest Paths
Breadth First Search BFS
Dijkstra-Algorithm
Bellman-Ford

3 All Pairs Shortest Paths
Floyd Warshall algorithm
Johnson algorithm

Nesrine Damak: Classical Shortest-Path Algorithms 2/ 35

Introduction Definitions

Definition

A graph G (V ,E) is a set V of vertices, a set E of edges, and a real-valued
weight function w : E −→ R .

Definition

A path P in G is a sequence of vertices (v1, .., vn) such that (vi , vi+1) ∈ E

for all 1 ≤ i < n and v ∈ V .

Definition

The weight of a path P in G is the sum of the weights of its edges:
w(P) =

∑
i w(vi−1, vi).

Nesrine Damak: Classical Shortest-Path Algorithms 3/ 35

Introduction Definitions

Definition

For nodes u, v ∈ V , the shortest path weight from u to v is defined to be:
δ(u, v) = min(w(P)) if such a P exists or infinity otherweise.

Definition

For nodes u, v ∈ V a shortest path from u to v is a path with
w(P) = δ(u, v)

Nesrine Damak: Classical Shortest-Path Algorithms 4/ 35

Introduction The Shortest Path Problem

Applications of the Shortest Path Problem

• find the best route to drive between Berlin and Munich or figure how
to direct packets to a destination across a network

• image segmentation

• speech recognition

• find the center point of a graph: the vertex that minimizes the
maximum distance to any other vertex in the graph.

Nesrine Damak: Classical Shortest-Path Algorithms 5/ 35

Single-Source Shortest Paths

Input: A graph G =(V,E), an edge weight function w and a node s ∈ V .
Output: A shortest path P from s to all other vertices v ∈ V − {s}.
Algorithmen:

• unweighted case : BFS

• no negativ edge-weights : Dijkstra-Algorithm

• general case : Bellman-Ford Algorithm

Nesrine Damak: Classical Shortest-Path Algorithms 6/ 35

Single-Source Shortest Paths Breadth First Search BFS

Notation

• dist(x): distance from the initial node to x , the shortest path found
by the algorithm so far

• Q: FIFO queue

Nesrine Damak: Classical Shortest-Path Algorithms 7/ 35

Single-Source Shortest Paths Breadth First Search BFS

• Suppose that w(u, v) = 1 for all uv ∈ E

• We use a simple FIFO queue

• Analysis Time: O(|V |+ |E |)

BFS(G)

while Q 6= empty do

u ← DEQUEUE (Q) ;
for each v ∈ adj(u) do

if dist(v) =∞ then

dist(v) = dist(u) + 1 ;
ENQUEUE (Q, v) ;

end

end

end

Nesrine Damak: Classical Shortest-Path Algorithms 8/ 35

Single-Source Shortest Paths Breadth First Search BFS

BFS is used to solve following problems:

• Testing whether graph is connected.

• Computing a spanning forest of graph.

• Computing, for every vertex in graph, a path with the minimum
number of edges between start vertex and current vertex or reporting
that no such path exists.

• Computing a cycle in graph or reporting that no such cycle exists.

Nesrine Damak: Classical Shortest-Path Algorithms 9/ 35

Single-Source Shortest Paths Dijkstra-Algorithm

Notation

• S :a set of vertices, whose shortest path distances from s are known
(”the solved set”).

• dist(x): distance from the initial node to x

• Q: priority queue maintaining V-S

• pred(v): the predecessor of the vertex v

Nesrine Damak: Classical Shortest-Path Algorithms 10/ 35

Single-Source Shortest Paths Dijkstra-Algorithm

Dijkstra(G,w,s)

dist(s) ← 0;
for v ∈ V − {s} do

dist(v)←∞;
end

S ← empty ;
Q ← V ;
while Q 6= empty do

u ← Extract −Min(Q) ;
S ← S ∪ {u} ;
for v ∈ adj(u) do

if dist(v) > dist(u) + w(u, v) then
dist(v)← dist(u) + w(u, v) ;

end

end

end

Nesrine Damak: Classical Shortest-Path Algorithms 11/ 35

Single-Source Shortest Paths Dijkstra-Algorithm

Nesrine Damak: Classical Shortest-Path Algorithms 12/ 35

Single-Source Shortest Paths Dijkstra-Algorithm

Proof of correctness

Theorem

Dijkstras Algorithm terminates with dist(v) = δ(s, v) for all v ∈ V .

Proof.

We show: dist(v) = δ(s, v) for every v ∈ V when v is added to S.
Supposition:

• v is the first vertex added to S , so that dist(v) > δ(s, v)

• y is the first vertex in V − S along a shortest path from s to v

• x = pred(y) ∈ S

then:

• dist(x) = δ(s, x)

• xy is relaxed: dist(y) = δ(s, y) ≤ δ(s, v) < dist(v)

CONTRADICTION because dist(v) ≤ dist(y) !

Nesrine Damak: Classical Shortest-Path Algorithms 13/ 35

Single-Source Shortest Paths Dijkstra-Algorithm

s x y v

Nesrine Damak: Classical Shortest-Path Algorithms 14/ 35

Single-Source Shortest Paths Dijkstra-Algorithm

Time complexity

Supposition: Fibonacci-heaps

Initialization O(|V |)

Extract-Min |V |O(log |V |)

DecreaseKey |E |O(|V |)

so is the time complexity of Dijkstra :O(|E |+ |V |log |V |)

Nesrine Damak: Classical Shortest-Path Algorithms 15/ 35

Single-Source Shortest Paths Bellman-Ford

The main idea is that if the edge uv is the last edge of the shortest path to
v, the cost of the shortest path to v is the cost of the shortest path to u
plus the weight of w(u,v).
Bellman-Ford algorithm finds all shortest-path lengths from a source
s ∈ V to all v ∈ V or determines that a negative-weight cycle exists.

Nesrine Damak: Classical Shortest-Path Algorithms 16/ 35

Single-Source Shortest Paths Bellman-Ford

Bellman-Ford(G,w,s)

dist(s) ← 0;
for v ∈ V − {s} do

dist(v)←∞;
pred(v) := null ;

end

Nesrine Damak: Classical Shortest-Path Algorithms 17/ 35

Single-Source Shortest Paths Bellman-Ford

for i from 1 to |V | − 1 do

for each edge uv ∈ E do

if dist(u) + w(u, v) < dist(v) then
dist(v) := dist(u) + w(u, v) ;
pred(v) := u ;

end

end

end

for each edge uv ∈ E do

if dist(u) + w(u, v) < dist(v) then
error ”Graph contains a negative-weight cycle” ;

end

end

Nesrine Damak: Classical Shortest-Path Algorithms 18/ 35

Single-Source Shortest Paths Bellman-Ford

Nesrine Damak: Classical Shortest-Path Algorithms 19/ 35

Single-Source Shortest Paths Bellman-Ford

Proof of correctness

Theorem

if G = (V ,E) contains no negative-weight cycles, then after the

Bellman-Ford algorithm executes, dist(v) = δ(s, v) for all v ∈ V

Proof.

let v ∈ V be any vertex, and consider a shortest path P from s to v with
the minimum number of edges.
we have: δ(s, vi) = δ(s, vi−1) + w(vi−1, vi).
Initially: dist(v0) = 0 = δ(s, v0)
After 1 pass through E : dist(v1) = δ(s, v1)
.
.
After k passes through E : dist(vk) = δ(s, vk)
Longest simple path has ≤ |V | − 1 edges.

Nesrine Damak: Classical Shortest-Path Algorithms 20/ 35

Single-Source Shortest Paths Bellman-Ford

Time complexity

The Bellman-Ford algorithm simply relaxes all the edges, and does this
|V | − 1 times: It runs in O(|V | · |E |) time: the best time bound for the
sssp problem.

Nesrine Damak: Classical Shortest-Path Algorithms 21/ 35

All Pairs Shortest Paths

Input: A connected graph G=(V,E) and an edge weight function w.
Output: For all pairs u, v ∈ V of nodes a shortest path from u to v
→ a |V | × |V | -matrix.
Possible algorithms:

• Naive implementation: Use standard single-source algorithms |V |
times

• Dijkstra : running a O(E + VlogV) process |V | times
• Bellman–Ford algorithm on a dense graph will take about O(V 2E)

• Floyd Warshall algorithm

• Johnson algorithm

Nesrine Damak: Classical Shortest-Path Algorithms 22/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

Notation

• dist(k)(i , j) is the distance from i to j with intermediate vertices
belonging to the set {1, 2, ..., k}

Nesrine Damak: Classical Shortest-Path Algorithms 23/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

Floyd-Warshall(G,w)

for i = 1 to V do

for j = 1 to V do

if there is an edge from i to j then

dist(0)(i , j) = the length of the edge from i to j ;
end

dist(0)(i , j) =∞ ;

end

end

for k = 1 to V do

for i = 1 to V do

for j = 1 to V do

dist(k)(i , j) =
min(dist(k−1)(i , j), dist(k−1)(i , k) + dist(k−1)(k , j)) ;

end

end

end
Nesrine Damak: Classical Shortest-Path Algorithms 24/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

• The algorithms running time is clearly O(|V |3)

• DIST (k) is the |V | × |V | Matrix [dist(k)(i , j)].

• dist(0)(i , j) = w(i , j) (no intermediate vertex = the edge from i to j)

• Claim: dist(|V |)(i , j) is the length of the shortest path from i to j . So
our aim is to compute DIST (|V |) .

• Subproblems: compute DIST (k) for k = 0, ..., |V | (dynamic!)

Nesrine Damak: Classical Shortest-Path Algorithms 25/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

How do we compute dist(k)(i , j) assuming that we have already

computed the previous matrix DIST (k−1)?

We dont go through k at all: Then the shortest path from i to j uses
only intermediate vertices {1, ..., k − 1} and hence the length of the
shortest path is dist(k−1)(i , j).

Nesrine Damak: Classical Shortest-Path Algorithms 26/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

We do go through k: we can assume that we pass through k exactly
once (no negative cycles). That is, we go from i to k, and then from k to
j: we should take the shortest path from i to k, and the shortest path from
k to j (optimality).
Each of these paths uses intermediate vertices only in {1, 2, .., k − 1}. The
length of the path is : dist(k−1)(i , k) + dist(k−1)(k , j).
This suggests the following recursive rule for computing DIST (k):

• dist(0)(i , j) = w(i , j)

• dist(k)(i , j) = min(dist(k−1)(i , j), dist(k−1)(i , k) + dist(k−1)(k , j))

After |V | iterations, dist |V |(i , j) is the shortest path between i and j.

Nesrine Damak: Classical Shortest-Path Algorithms 27/ 35

All Pairs Shortest Paths Johnson algorithm

Notation

a shortest-path tree rooted at the source vertex s is a directed subgraph
G ′ = (V ′,E ′) where V ′ and E ′ are subsets of V and E respectively, such
that

• V ′ is the set of vertices reachable from s in G

• G ′ forms a rooted tree with root s

• for all v ∈ V ′, the unique path from s to v ∈ G ′ is the shortest path
from s to v in G

Nesrine Damak: Classical Shortest-Path Algorithms 28/ 35

All Pairs Shortest Paths Johnson algorithm

Idea:

• Add a new node s so that w(s, v) = 0 for all v ∈ V → a new graph
G ′.

• Use the BellmanFord algorithm to check for negative weight cycles
and find h(v) = δ(s, v) in G ′.

• Reweight the edges using h(v) with the reweighting function
ŵ(u, v)← w(u, v) + h(u)− h(v).

• Use Dijkstras algorithm on the transformed graph (with no negative
edges) in order to find the shortest path.

Pseudocode

Johnson(G,w)

Compute G ′, where V [G ′] = V [G] ∪ s ;
E [G ′] = E [G] ∪ (s, v) : v ∈ V [G] ;
for all v ∈ V [G] do

w(s, v) = 0 ;
end

Nesrine Damak: Classical Shortest-Path Algorithms 29/ 35

All Pairs Shortest Paths Johnson algorithm

if BELLMAN − FORD(G ′,w , s) = FALSE then

print the input graph contains a negative weight cycle ;
end

for each vertex v ∈ V [G ′] do
set h(v) to the value of δ(s, v) computed by the Bellman-Ford alg.;

end

for each edge (u, v) ∈ E [G ′] do
ŵ(u, v)← w(u, v) + h(u)− h(v) ;
for each vertex u ∈ V [G] do

run DIJKSTRA(G , ŵ , u) to compute δ′(u, v) for all v ∈ V [G];
for each vertex v ∈ V [G] do

dist(u, v)← δ′(u, v) + h(v)− h(u) ;
end

end

end

Nesrine Damak: Classical Shortest-Path Algorithms 30/ 35

All Pairs Shortest Paths Johnson algorithm

Nesrine Damak: Classical Shortest-Path Algorithms 31/ 35

All Pairs Shortest Paths Johnson algorithm

Are all the ŵ ’s non-negative? YES

δ(s, u) + w(u, v) ≥ δ(s, v) otherwise s → u → v would be shorter than
the shortest path s → v

Nesrine Damak: Classical Shortest-Path Algorithms 32/ 35

All Pairs Shortest Paths Johnson algorithm

Does the reweighting preserve the shortest path? YES

ŵ(p) =
∑

ŵ(vi , vi+1)
= w(v1, v2)+ δ(s, v1)− δ(s, v2)++w(vk−1, vk)+ δ(s, vk−1)− δ(s, vk)
= w(p) + δ(s, v1)− δ(s, vk)

Nesrine Damak: Classical Shortest-Path Algorithms 33/ 35

All Pairs Shortest Paths Johnson algorithm

Time complexity

1 Computing G: Θ(V)

2 Bellman-Ford: Θ(VE)

3 Reweighting: Θ(E)

4 Running (Modified) Dijkstra: Θ(V 2lgV + VE)

5 Adjusting distances: Θ(V 2)

Total is dominated by Dijkstra: Θ(V 2lgV + VE)

Nesrine Damak: Classical Shortest-Path Algorithms 34/ 35

All Pairs Shortest Paths Johnson algorithm

Thank you!

Nesrine Damak: Classical Shortest-Path Algorithms 35/ 35

	Introduction
	Definitions
	The Shortest Path Problem

	Single-Source Shortest Paths
	Breadth First Search BFS
	Dijkstra-Algorithm
	Bellman-Ford

	All Pairs Shortest Paths
	Floyd Warshall algorithm
	Johnson algorithm

