Title

Ferienakademie im Sarntal — Course 2
Distance Problems: Theory and Praxis

Nesrine Damak

Fakultat fiir Informatik
TU Miinchen

20. September 2010

Nesrine Damak: Classical Shortest-Path Algorithms 1/ 35

Outline

@ Introduction
Definitions
The Shortest Path Problem

@ Single-Source Shortest Paths
Breadth First Search BFS
Dijkstra-Algorithm
Bellman-Ford

® All Pairs Shortest Paths
Floyd Warshall algorithm
Johnson algorithm

Nesrine Damak: Classical Shortest-Path Algorithms

2/ 35

Introduction Definitions

Definition
A graph G(V,E) is a set V of vertices, a set E of edges, and a real-valued
weight function w : E — R.

Definition
A path P in G is a sequence of vertices (vi, .., v) such that (vj, vj11) € E
foralll<i<nandveV.

Definition
The weight of a path P in G is the sum of the weights of its edges:

w(P) =, w(vi_1, vj).

Nesrine Damak: Classical Shortest-Path Algorithms 3/ 35

Introduction Definitions

Definition
For nodes u,v € V' , the shortest path weight from u to v is defined to be:
0(u,v) = min(w(P)) if such a P exists or infinity otherweise.

Definition

For nodes u,v € V a shortest path from u to v is a path with
w(P) = 6(u, v)

Nesrine Damak: Classical Shortest-Path Algorithms 4/ 35

Applications of the Shortest Path Problem
e find the best route to drive between Berlin and Munich or figure how
to direct packets to a destination across a network
e image segmentation
e speech recognition

e find the center point of a graph: the vertex that minimizes the
maximum distance to any other vertex in the graph.

Nesrine Damak: Classical Shortest-Path Algorithms 5/ 35

Single-Source Shortest Paths

Input: A graph G =(V,E), an edge weight function w and a node s € V.
Output: A shortest path P from s to all other vertices v € V — {s}.
Algorithmen:

e unweighted case : BFS
e no negativ edge-weights : Dijkstra-Algorithm

e general case : Bellman-Ford Algorithm

Nesrine Damak: Classical Shortest-Path Algorithms 6/ 35

Single-Source Shortest Paths Breadth First Search BFS

Notation

e dist(x): distance from the initial node to x, the shortest path found
by the algorithm so far

e Q: FIFO queue

Nesrine Damak: Classical Shortest-Path Algorithms 7/ 35

Single-Source Shortest Paths Breadth First Search BFS

e Suppose that w(u,v) =1 for all uv € E
e We use a simple FIFO queue
e Analysis Time: O(|V|+ |E])

BFS(G)
while Q # empty do
u < DEQUEUE(Q) ;
for each v € adj(u) do
if dist(v) = oo then
dist(v) = dist(u) + 1 ;
ENQUEUE(Q, v) :
end
end
end

Nesrine Damak: Classical Shortest-Path Algorithms 8/ 35

Single-Source Shortest Paths Breadth First Search BFS

BFS is used to solve following problems:

Testing whether graph is connected.

Computing a spanning forest of graph.

Computing, for every vertex in graph, a path with the minimum
number of edges between start vertex and current vertex or reporting

that no such path exists.
Computing a cycle in graph or reporting that no such cycle exists.

Nesrine Damak: Classical Shortest-Path Algorithms 9/ 35

Single-Source Shortest Paths Dijkstra-Algorithm

Notation
e S:a set of vertices, whose shortest path distances from s are known
("the solved set”).
e dist(x): distance from the initial node to x
e Q: priority queue maintaining V-S

e pred(v): the predecessor of the vertex v

Nesrine Damak: Classical Shortest-Path Algorithms 10/ 35

Single-Source Shortest Paths Dijkstra-Algorithm

Dijkstra(G,w,s)

dist(s) < 0;

for ve V—{s} do

‘ dist(v)<«— oo;

end

S + empty ;

QR+ V;

while Q # empty do

u < Extract — Min(Q) ;

S+ Su{u};

for v € adj(u) do
if dist(v) > dist(u) + w(u, v) then

‘ dist(v) < dist(u) + w(u, v) ;

end

end

end

Nesrine Damak: Classical Shortest-Path Algorithms 11/ 35

rithm

Paths Dijkstra-Algo

Shortest

Single-Source

DIJKSTRA'S ALGORITHM

12/ 35

rithms

sical Shortest-Path Algo

Damak: Clas:

Single-Source Shortest Paths Dijkstra-Algorithm

Proof of correctness

Theorem
Dijkstras Algorithm terminates with dist(v) = 0(s,v) for all v € V.

Proof.
We show: dist(v) = (s, v) for every v € V when v is added to S.
Supposition:
e v is the first vertex added to S , so that dist(v) > d(s, v)
e y is the first vertex in V — S along a shortest path from s to v
e x=npred(y) €S
then:
e dist(x) = (s, x)
e xy is relaxed: dist(y) = (s, y) < (s, v) < dist(v)
CONTRADICTION because dist(v) < dist(y) !

Nesrine Damak: Classical Shortest-Path Algorithms 13/ 35

Single: ce Shortest Paths Dijkstra-Algorithm

Nesrine Damak: Classical Shortest-Path Algorithms 14/ 35

Single-Source Shortest Paths Dijkstra-Algorithm

Time complexity
Supposition: Fibonacci-heaps

Initialization O(|V/|)
Extract-Min |V|O(log|V|)
DecreaseKey |E|O(|V|)

so is the time complexity of Dijkstra :O(|E| + |V|log|V|)

Nesrine Damak: Classical Shortest-Path Algorithms 15/ 35

Single-Source Shortest Paths Bellman-Ford

The main idea is that if the edge uv is the last edge of the shortest path to
v, the cost of the shortest path to v is the cost of the shortest path to u
plus the weight of w(u,v).

Bellman-Ford algorithm finds all shortest-path lengths from a source

s € V to all v € V or determines that a negative-weight cycle exists.

Nesrine Damak: Classical Shortest-Path Algorithms 16/ 35

Single-Source Shortest Paths Bellman-Ford

Bellman-Ford(G,w,s)

dist(s) « 0;

for ve V—{s} do
dist(v)<— oo;
pred(v) := null,

end

Nesrine Damak: Classical Shortest-Path Algorithms 17/ 35

Single-Source Shortest Paths Bellman-Ford

for i from 1 to |V| — 1 do
for each edge uv € E do
if dist(u) + w(u,v) < dist(v) then
dist(v) := dist(u) + w(u,v) ;
pred(v) = u;
end
end
end
for each edge uv € E do
if dist(u) + w(u,v) < dist(v) then
‘ error " Graph contains a negative-weight cycle” ;
end

end

Nesrine Damak: Classical Shortest-Path Algorithms 18/ 35

Paths Bellman-Ford

Shortest

Single-Source

BELLMAN-FORD ALGORITHM

19/ 35

thms

t-Path Algori

sical Shortes:

Damak: Clas:

Single-Source Shortest Paths Bellman-Ford

Proof of correctness

Theorem
if G = (V, E) contains no negative-weight cycles, then after the
Bellman-Ford algorithm executes, dist(v) = 6(s,v) for allv € V

Proof.

let v € V be any vertex, and consider a shortest path P from s to v with
the minimum number of edges.

we have: (s, v;) = (s, vi—1) + w(vi_1, vj).

Initially: dist(vo) = 0 = d(s, w)

After 1 pass through E : dist(v1) = d(s, v1)

After k passes through E : dist(vy) = (s, vk)
Longest simple path has < |V/| — 1 edges.

Nesrine Damak: Classical Shortest-Path Algorithms 20/ 35

Single-Source Shortest Paths Bellman-Ford

Time complexity

The Bellman-Ford algorithm simply relaxes all the edges, and does this
|V| —1 times: It runs in O(|V/|- |E|) time: the best time bound for the
sssp problem.

Nesrine Damak: Classical Shortest-Path Algorithms 21/ 35

All Pairs Shortest Paths

Input: A connected graph G=(V,E) and an edge weight function w.
Output: For all pairs u,v € V of nodes a shortest path from u to v
— a | V| x | V| -matrix.
Possible algorithms:
¢ Naive implementation: Use standard single-source algorithms | V/|
times
e Dijkstra : running a O(E + VlogV') process | V| times
e Bellman—Ford algorithm on a dense graph will take about O(V?E)

e Floyd Warshall algorithm

e Johnson algorithm

Nesrine Damak: Classical Shortest-Path Algorithms 22/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

Notation

° dist(k)(i./j) is the distance from i to j with intermediate vertices
belonging to the set {1,2, ..., k}

Nesrine Damak: Classical Shortest-Path Algorithms 23/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

Floyd-Warshall(G,w)
fori=1toV do
for j=1to V do
if there is an edge from i to j then
‘ dist©)(i, j) = the length of the edge from i to j ;
end
dist©)(i, j) = oo ;
end
nd
or k=1toV do
for i=1to V do
for j=1to V do
dist(F (i, j) =
min(dist =D (i, j), dist*~D (i, k) + distk=D(k,)) ;
end
end
end

= 0

Nesrine Damak: Classical Shortest-Path Algorithms 24/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

The algorithms running time is clearly O(|V/|?)
DIST() is the | V| x |V| Matrix [dist(®)(i, j)].
dist©) (i, j) = w(i,j) (no intermediate vertex = the edge from i to j)

Claim: dist{IVD(i, j) is the length of the shortest path from i to j . So
our aim is to compute DIST(VD) .

Subproblems: compute DIST() for k =0, ..., |V/| (dynamic!)

Nesrine Damak: Classical Shortest-Path Algorithms 25/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

How do we compute dist(¥)(i, j) assuming that we have already
computed the previous matrix DIST(k=1)?

We dont go through k at all: Then the shortest path from i to j uses
only intermediate vertices {1, ..., k — 1} and hence the length of the
shortest path is dist(k=1)(;_ j).

Nesrine Damak: Classical Shortest-Path Algorithms 26/ 35

All Pairs Shortest Paths Floyd Warshall algorithm

We do go through k: we can assume that we pass through k exactly
once (no negative cycles). That is, we go from i to k, and then from k to
j: we should take the shortest path from i to k, and the shortest path from
k to j (optimality).

Each of these paths uses intermediate vertices only in {1,2,..,k —1}. The
length of the path is : dist("=1(i, k) 4 dist(*=1)(k, j).

This suggests the following recursive rule for computing DIST(K):

o dist©)(i,j) = w(i,j)
o dist(K) (i, j) = min(dist =V (i,), distk=V (i, k) + distk=1)(k, j))

After | V| iterations, dist!VI(i,) is the shortest path between i and j.

Nesrine Damak: Classical Shortest-Path Algorithms 27/ 35

All Pairs Shortest Paths Johnson algorithm

Notation
a shortest-path tree rooted at the source vertex s is a directed subgraph

G' = (V',E’) where V' and E’ are subsets of V and E respectively, such

that
e /' is the set of vertices reachable from s in G

e G’ forms a rooted tree with root s
e for all v € V/, the unique path from s to v € G’ is the shortest path

from stovin G

Nesrine Damak: Classical Shortest-Path Algorithms 28/ 35

All Pairs Shortest Paths Johnson algorithm

Idea:

e Add a new node s so that w(s,v) =0 for all v € V — a new graph
G'.

e Use the BellmanFord algorithm to check for negative weight cycles
and find h(v) = d(s,v) in G'.

e Reweight the edges using h(v) with the reweighting function
w(u, v) < w(u, v) + h(u) — h(v).

e Use Dijkstras algorithm on the transformed graph (with no negative
edges) in order to find the shortest path.

Pseudocode

Johnson(G,w)
Compute G’, where V[G'] = V[G]Us ;
E[G'] = E[G]U (s,v) : v € V]G] ;
for all v € V[G] do
‘ w(s,v)=0;
end

Nesrine Damak: Classical Shortest-Path Algorithms 29/ 35

All Pairs Shortest Paths Johnson algorithm

if BELLMAN — FORD(G’, w,s) = FALSE then
‘ print the input graph contains a negative weight cycle ;
end
for each vertex v € V[G'] do
‘ set h(v) to the value of §(s, v) computed by the Bellman-Ford alg.;
end
for each edge (u,v) € E[G'] do
w(u,v) < w(u,v) + h(u) — h(v) ;
for each vertex u € V[G] do
run DIJKSTRA(G, W, u) to compute §'(u, v) for all v € V[G];
for each vertex v € V[G] do
| dist(u,v) < & (u,v) + h(v) — h(u) ;
end
end
end

Nesrine Damak: Classical Shortest-Path Algorithms 30/ 35

All Pairs Shortest Paths Johnson algorithm

5
(€3] (=)

Nesrine Damak: Classical Shortest-Path Algorithms 31/ 35

All Pairs Shortest Paths Johnson algorithm

Are all the W’s non-negative? YES
d(s, u) + w(u,v) > d(s, v) otherwise s — u — v would be shorter than
the shortest path s — v

Nesrine Damak: Classical Shortest-Path Algorithms 32/ 35

All Pairs Shortest Paths Johnson algorithm

Does the reweighting preserve the shortest path? YES

W(p) = ¥ W(vi, vis1)

= W(Vl, V2) —i—(S(S, Vl) = (S(S, V2) + e + W(kal, Vk) —|—5(S, kal) = (S(S, Vk)
= w(p) + (s, v1) — d(s, vk)

Nesrine Damak: Classical Shortest-Path Algorithms 33/ 35

All Pairs Shortest Paths Johnson algorithm

Time complexity
® Computing G: O(V)
® Bellman-Ford: ©(VE)
© Reweighting: O(E)
O Running (Modified) Dijkstra: ©(V2/gV + VE)
© Adjusting distances: O(V?)
Total is dominated by Dijkstra: ©(V?2IgV + VE)

Nesrine Damak: Classical Shortest-Path Algorithms 34/ 35

All Pairs Shortest Paths Johnson algorithm

Thank you!

Nesrine Damak: Classical Shortest-Path Algorithms 35/ 35

	Introduction
	Definitions
	The Shortest Path Problem

	Single-Source Shortest Paths
	Breadth First Search BFS
	Dijkstra-Algorithm
	Bellman-Ford

	All Pairs Shortest Paths
	Floyd Warshall algorithm
	Johnson algorithm

