Contraction Hierarchies

Ferienakademie im Sarntal — Course 2
Distance Problems: Theory and Praxis

Mykola Protsenko

Institut für Informatik
FAU Erlangen-Nürnberg

28. September 2010
Outline

1 Introduction

2 Contraction Hierarchies Algorithm
 - Node ordering
 - Contraction
 - Queries

3 Conclusion
 - Experiments
Contraction hierarchies
Another hierarchical approach.

- **Preprocessing:**
 - Nodes are numbered according to their 'importance'
 - Hierarchy: contract the nodes in this order
 - To preserve shortest paths shortcuts are added

- **Queries:** try to avoid less important nodes (use shortcuts)
 - Modified bidirectional Dijkstra
 - Forward search: only edges in ASC importance
 - Backward search: only edges in DESC importance
Importance

Which node is more important?
Importance

Contracting blue node
Importance
Contracting red node
Node ordering

- *priority queue*, minimum element is to be contracted next
- *priority* = the ”importance” of a node = **linear combination of several terms**
- *difficulty*: contraction of a node may affect the priorities of others
Techniques to keep priority up-to-date

- *lazy update:*
 - before contracting \(v \) update its priority
 - if new priority of \(v \) is greater than priority of the second largest element \(v' \): reinsert \(v \)
 - repeat until consistent minimum found

- recompute priority of the neighbors of the contracted node

- periodically recompute all priorities
Parameters of the priority function

- **Edge difference:**
 - number of shortcuts needed - number of incident edges
 - the most important term
 - exact computation of the number of shortcuts may be expensive
 - \Rightarrow search with limited number of hops
Parameters of the priority function

Example: bad node ordering
Parameters of the priority function

Example: good node ordering

1 4 2 5 3 6
Parameters of the priority function

Example: good node ordering

```
1 4 2 5 3 6
```
Parameters of the priority function

Example: good node ordering

![Graph showing a good node ordering example](image-url)
Parameters of the priority function

Example: good node ordering
Parameters of the priority function

- **Uniformity**: Contract nodes everywhere in the graph in a uniform way
 - *Deleted Neighbors*: count already contracted neighbors
 - *Voronoi Regions*: \(\sqrt{|R|} \)
 - \(R(v) := \{ u \mid d(v, u) < d(w, u) \forall w \in E \} \)
 - neighbors of contracted node 'eat up' its *Voronoi region*
Parameters of the priority function

Voronoi Regions:
Parameters of the priority function

Voronoi Regions:
Parameters of the priority function

- **Cost of contraction**: the cost of making a decision, if a shortcut is needed
Parameters of the priority function

- **Cost of queries**: how contracting affects the size of query search space
 - estimate $Q(v)$, the upper bound of number of hops of a path $\langle s, ..., v \rangle$
 - initially: $Q(v) = 0$
 - when v is contracted, for each neighbor u:
 $$Q(u) := \max(Q(u), Q(v) + 1)$$
Contraction

- Given: overlay graph $G' = (V', E')$
- v is the next node to contract

Important: add shortcuts to replace unique shortest paths, going through v
Shortcuts
For $\forall u \in V'$ with $(u, v) \in E'$ and $\forall w \in V'$ with $(v, w) \in E'$:

- search for a shortest distance $d(u, w)$ ignoring v
- if $d(u, w) > c(u, v) + c(v, w)$ - shortcut is needed
Shortcuts
To find out, if shortcut is really needed:

- start forward shortest-distance search from every source u (Dijkstra)
- exact shortest distance search can be expensive \Rightarrow restrict the maximum number of hops:
 - small hop limit \Rightarrow fast contraction, but possibly unneeded shortcuts...
 - large hop limit \Rightarrow slower contraction, but more sparse graph, better query time...
Queries

Split the contraction hierarchy $CH(V,E)$ (original nodes, original edges + shortcuts):

- **upward graph** $G^\uparrow := (V, E^\uparrow)$ with $E^\uparrow := \{(u, v) \in E : u < v\}$
- **downward graph** $G^\downarrow := (V, E^\downarrow)$ with $E^\downarrow := \{(u, v) \in E : u > v\}$
Queries

Modified bidirectional Dijkstra:

- forward search in $G_↑$
- backward search in $G_↓$
- alternate both searches

Search **can not** be stopped, if **one** node is settled in both directions!
Bidirectional Search
Lemma. \(d(s, t) = \min \{ d(s, v) + d(v, t) : v \text{ is settled in both searches} \} \)

\(\iff \exists P = \langle s, ..v, ..t \rangle \) - shortest path with:

- \(v \) - the node with highest priority in \(P \)
- \(\langle s, ..v \rangle \) - ASC priority
- \(\langle v, ..t \rangle \) - DESC priority
Proof (contradiction). Suppose:
⇒ contradiction.
Shortest distance vs. shortest paths

If only shortest distance needed:

- store edge \((u, v)\) only in \(\min\{u, v\}\)
- \(\Rightarrow\) reduces space consumption

To find a shortest path:

- each shortcut \((u, w)\) bypasses exactly one node \(v\)
- \(\Rightarrow\) store \(v\) together with the shortcut
- unpack paths recursively
Experiments

- road network of Western Europe: 18 M nodes, 42 M edges
- different variants of CH:
 - $E =$ edge difference
 - $D =$ deleted neighbors
 - $S =$ search space size
 - $V = \sqrt{\text{Voronoï region size}}$
 - $Q =$ upper bound on edges in search paths
 - $L =$ limit search space on weight calculation
 - $W =$ relative betweenness
- digits: hop limit
Conclusion

Experiments

<table>
<thead>
<tr>
<th>method</th>
<th>node ordering [s]</th>
<th>hierarchy construction [s]</th>
<th>query [μs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>13010</td>
<td>1739</td>
<td>670</td>
</tr>
<tr>
<td>ED</td>
<td>7746</td>
<td>1062</td>
<td>183</td>
</tr>
<tr>
<td>ES</td>
<td>5355</td>
<td>123</td>
<td>245</td>
</tr>
<tr>
<td>ED5</td>
<td>634</td>
<td>98</td>
<td>224</td>
</tr>
<tr>
<td>EDS5</td>
<td>652</td>
<td>99</td>
<td>213</td>
</tr>
<tr>
<td>EDS1235</td>
<td>545</td>
<td>57</td>
<td>223</td>
</tr>
<tr>
<td>EDSQ1235</td>
<td>591</td>
<td>64</td>
<td>211</td>
</tr>
<tr>
<td>EDSQL</td>
<td>1648</td>
<td>199</td>
<td>173</td>
</tr>
<tr>
<td>EVSQL</td>
<td>1627</td>
<td>170</td>
<td>159</td>
</tr>
<tr>
<td>EDSQWL</td>
<td>1629</td>
<td>199</td>
<td>163</td>
</tr>
<tr>
<td>EVSQWL</td>
<td>1734</td>
<td>180</td>
<td>154</td>
</tr>
<tr>
<td>HNR</td>
<td>594</td>
<td>203</td>
<td>802</td>
</tr>
</tbody>
</table>
Conclusion
CHs are simple and efficient

- can be used for dynamic weights
- as base for other routing methods: preprocessing in Transit-Node Routing
Thank you!