12 Augmenting Path Algorithms

Greedy-algorithm:
- start with $f(e) = 0$ everywhere
- find an s-t path with $f(e) < c(e)$ on every edge
- augment flow along the path
- repeat as long as possible

The Residual Graph
From the graph $G = (V, E, c)$ and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):
- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) - f(e_1) + f(e_2)\}$ and e'_2 with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.

Augmenting Path Algorithm

Definition 50
An augmenting path with respect to flow f, is a path in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 45 FordFulkerson($G = (V, E, c)$)
1: Initialize $f(e) ← 0$ for all edges.
2: while $∃$ augmenting path p in G_f do
3: augment as much flow along p as possible.

Augmenting Path Algorithm

Theorem 51
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 52
The value of a maximum flow is equal to the value of a minimum cut.

Proof.
Let f be a flow. The following are equivalent:
1. There exists a cut A, B such that $\text{val}(f) = \text{cap}(A, B)$.
2. Flow f is a maximum flow.
3. There is no augmenting path w.r.t. f.\qed
Augmenting Path Algorithm

1. \(\Rightarrow \) 2.
 This we already showed.

2. \(\Rightarrow \) 3.
 If there were an augmenting path, we could improve the flow.
 Contradiction.

3. \(\Rightarrow \) 1.
 - Let \(f \) be a flow with no augmenting paths.
 - Let \(A \) be the set of vertices reachable from \(s \) in the residual
 graph along non-zero capacity edges.
 - Since there is no augmenting path we have \(s \in A \) and \(t \notin A \).

\[
\begin{align*}
\text{val}(f) &= \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{into}(A)} f(e) \\
&= \sum_{e \in \text{out}(A)} c(e) \\
&= \text{cap}(A, V \setminus A)
\end{align*}
\]

This finishes the proof.

Here the first equality uses the flow value lemma, and the second
exploits the fact that the flow along incoming edges must be 0 as
the residual graph does not have edges leaving \(A \).

Analysis

Assumption:
All capacities are integers between 1 and \(C \).

Invariant:
Every flow value \(f(e) \) and every residual capacity \(c_f(e) \) remains
integral throughout the algorithm.

Lemma 53
The algorithm terminates in at most \(\text{val}(f^*) \leq nC \) iterations,
where \(f^* \) denotes the maximum flow. Each iteration can be
implemented in time \(O(m) \). This gives a total running time of
\(O(nmC) \).

Theorem 54
If all capacities are integers, then there exists a maximum flow
for which every flow value \(f(e) \) is integral.
A bad input

Problem: The running time may not be polynomial.

Question:
Can we tweak the algorithm so that the running time is polynomial in the input length?

A Pathological Input

Let $r = \frac{1}{2}(\sqrt{5} - 1)$. Then $r^{n+2} = r^n - r^{n+1}$.

Running time may be infinite!!!
Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 57
The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. This gives a running time of $O(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $O(m)$ via BFS.
- $O(m)$ augmentations for paths of exactly $k < n$ edges.

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u,v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f if it is a an s-u path in L_G.

Overview: Shortest Augmenting Paths

Lemma 55
The length of the shortest augmenting path never decreases.

Lemma 56
After at most $O(m)$ augmentations, the length of the shortest augmenting path strictly increases.

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f.

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u,v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f if it is a an s-u path in L_G.

Diagram:

```
gf
Lg
s
2
3
4
5
10
6
2
10
0
2
0
9
0
10
0
6
0
10
0
4
0
```
Shortest Augmenting Path

First Lemma: The length of the shortest augmenting path never decreases.

- After an augmentation the following changes are done in G_f.
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don’t have back edges so far.

These changes cannot decrease the distance between s and t.

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L.

Theorem 58

The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. Each augmentation can be performed in time $O(m)$.

Theorem 59 (without proof)

There exist networks with $m = \Theta(n^2)$ that require $O(mn)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow.

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $O(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $O(m)$ per augmentation for this).
Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L.

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_L for the phase takes time $O(m)$.

The total cost for searching for augmenting paths during a phase is at most $O(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $O(n)$.

The total cost for performing an augmentation during a phase is only $O(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $O(mn^2)$.

How to choose augmenting paths?

▶ We need to find paths efficiently.
▶ We want to guarantee a small number of iterations.

Several possibilities:

▶ Choose path with maximum bottleneck capacity.
▶ Choose path with sufficiently large bottleneck capacity.
▶ Choose the shortest augmenting path.
Capacity Scaling

Intuition:
- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don’t worry about finding the exact bottleneck.
- Maintain scaling parameter Δ.
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.

Algorithm 46 maxflow(G, s, t, c)

1: $\text{foreach } e \in E \text{ do } f_e \leftarrow 0$;
2: $\Delta \leftarrow 2^{\lceil \log_2 C \rceil}$
3: while $\Delta \geq 1$ do
4: $G_f(\Delta) \leftarrow$ residual graph
5: while there is augmenting path P in $G_f(\Delta)$ do
6: $f \leftarrow \text{augment}(f, c, P)$
7: $\text{update}(G_f(\Delta))$
8: $\Delta \leftarrow \Delta / 2$
9: return f

Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:
- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

Lemma 60
There are $\lceil \log C \rceil$ iterations over Δ.

Proof: obvious.

Lemma 61
Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + 2m\Delta$.

Proof: less obvious, but simple:
- An s-t cut in $G_f(\Delta)$ gives me an upper bound on the amount of flow that my algorithm can still add to f.
- The edges that currently have capacity at most Δ in G_f form an s-t cut with capacity at most $2m\Delta$.
Capacity Scaling

Lemma 62
There are at most $2m$ augmentations per scaling-phase.

Proof:
- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ.

Theorem 63
We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $O(m^2 \log C)$.