7 Dictionary

Dictionary:

- S.insert (\boldsymbol{x}) : Insert an element x.
- S.delete (x) : Delete the element pointed to by x.
- S.search (\boldsymbol{k}) : Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than key $[v]$ and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.
(External Search Trees store objects only at leaf-vertices)
Examples:

7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- T. insert (x)
-T. delete (x)
- T. search(k)
-T. successor (x)
-T. predecessor (x)
- T. minimum()
- T. maximum()

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 5 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Minimum

Algorithm 6 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeMin(left $[x]$)

Binary Search Trees: Minimum

Algorithm 6 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeMin(left $[x]$)

Binary Search Trees: Minimum

Algorithm 6 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeMin(left $[x]$)

Binary Search Trees: Minimum

Algorithm 6 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeMin(left $[x]$)

Binary Search Trees: Minimum

Algorithm 6 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeMin(left $[x]$)

Binary Search Trees: Minimum

Algorithm 6 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeMin(left $[x]$)

Binary Search Trees: Successor

Binary Search Trees: Insert

Binary Search Trees: Insert

Insert element not in the tree.

Binary Search Trees: Insert

Insert element not in the tree.

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Search for z. At some
point the search stops
at a null-pointer. This is
Search for z. At some
point the search stops
at a null-pointer. This is
Search for z. At some
point the search stops
at a null-pointer. This is the place to insert z.

(25)

Algorithm 8 Treelnsert (x, z) (47) (55)
1: if $x=$ null then $\operatorname{root}[T] \leftarrow x$; return;
2: if $\operatorname{key}[x]>\operatorname{key}[z]$ then
3: \quad if left $[x]=$ null then $\operatorname{left}[x] \leftarrow z$;
4: \quad else TreeInsert $(\operatorname{left}[x], z)$;
: else
6:
7: \quad else TreeInsert (right $[x], z)$;
8: return

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Delete

Binary Search Trees: Delete

Case 1:
Element does not have any children

- Simply go to the parent and set the corresponding pointer to null.

Binary Search Trees: Delete

Case 1:
Element does not have any children

- Simply go to the parent and set the corresponding pointer to null.

Binary Search Trees: Delete

Case 1:
Element does not have any children

- Simply go to the parent and set the corresponding pointer to null.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

```
Algorithm 9 TreeDelete (z)
    1: if left \([z]=\) null or right \([z]=\) null
    2: \(\quad\) then \(y \leftarrow z\) else \(y \leftarrow \operatorname{TreeSucc}(z) ; \quad\) select \(y\) to splice out
    3: if left \([y] \neq\) null
    4: \(\quad\) then \(x \leftarrow \operatorname{left}[y]\) else \(x \leftarrow \operatorname{right}[y] ; x\) is child of \(y\) (or null)
    5: if \(x \neq\) null then \(\operatorname{parent}[x] \leftarrow \operatorname{parent}[y] ; \quad\) parent \([x]\) is correct
    6: if parent \([y]=\) null then
    7: \(\quad \operatorname{root}[T] \leftarrow x\)
    8: else
    9: \(\quad\) if \(y=\operatorname{left}[\) parent \([x]]\) then
                        left[parent \([y]] \leftarrow x\)
11: else
12: \(\quad \operatorname{right}[\) parent \([y]] \leftarrow x\)
13: if \(y \neq z\) then copy \(y\)-data to \(z\)
```


Balanced Binary Search Trees

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps
similar: SPLAY trees.

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

1. The root is black.

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

1. The root is black.
2. All leaf nodes are black.

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Red Black Trees: Example

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 13

The black height $\mathrm{bh}(v)$ of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 13
The black height $\mathrm{bh}(v)$ of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:
Lemma 14
A sub-tree of black height bh (v) in a red black tree contains at least $2^{\mathrm{bh}(v)}-1$ internal vertices.

7.2 Red Black Trees

Proof of Lemma 4.

7.2 Red Black Trees

Proof of Lemma 4.
Induction on the height of v.

7.2 Red Black Trees

Proof of Lemma 4.
Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.

7.2 Red Black Trees

Proof of Lemma 4.
Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0 .

7.2 Red Black Trees

Proof of Lemma 4.
Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0 .
- The sub-tree rooted at v contains $0=2^{\mathrm{bh}(v)}-1$ inner vertices.

7.2 Red Black Trees

Proof (cont.)

7.2 Red Black Trees

Proof (cont.)

 induction step- Supose v is a node with height $(v)>0$.

7.2 Red Black Trees

Proof (cont.)

 induction step- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.

7.2 Red Black Trees

Proof (cont.)

 induction step- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children $\left(c_{1}, c_{2}\right)$ either have $\operatorname{bh}\left(c_{i}\right)=\operatorname{bh}(v)$ or $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)-1$.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children $\left(c_{1}, c_{2}\right)$ either have $\operatorname{bh}\left(c_{i}\right)=\mathrm{bh}(v)$ or $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)-1$.
- By induction hypothesis both sub-trees contain at least $2^{\mathrm{bh}(v)-1}-1$ internal vertices.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children (c_{1}, c_{2}) either have $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)$ or $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)-1$.
- By induction hypothesis both sub-trees contain at least $2^{\mathrm{bh}(v)-1}-1$ internal vertices.
- Then T_{v} contains at least $2\left(2^{\operatorname{bh}(v)-1}-1\right)+1 \geq 2^{\mathrm{bh}(v)}-1$ vertices.

7.2 Red Black Trees

Proof of Lemma 12.

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

7.2 Red Black Trees

Proof of Lemma 12.
Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

7.2 Red Black Trees

Proof of Lemma 12.
Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.

7.2 Red Black Trees

Proof of Lemma 12.
Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.
The tree contains at least $2^{h / 2}-1$ internal vertices. Hence, $2^{h / 2}-1 \geq n$.

7.2 Red Black Trees

Proof of Lemma 12.
Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.
The tree contains at least $2^{h / 2}-1$ internal vertices. Hence, $2^{h / 2}-1 \geq n$.

Hence, $h \leq 2 \log n+1=\mathcal{O}(\log n)$.

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red black properties are maintained.

Rotations

The properties will be maintained through rotations:

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)
- or the parent does not exist (violation since root must be black)

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)
- or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: \(\quad\) if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent \([z]]\)
    4: if col[uncle] = red then
    5: \(\quad \operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
    6: \(\quad \operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red} ; z \leftarrow \operatorname{grandparent}[z]\);
    7: else
    8:
    9:
10:
11:
                                if \(z=\operatorname{right}[\) parent \([z]]\) then
        \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z)\);
        \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow \mathrm{red}\);
        RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

```
Algorithm 10 InsertFix(z)
    1: while parent[z] = null and col[parent[z]] = red do
    2: if parent[z] = left[gp[z]] then z in left subtree of grandparent
    3: uncle }\leftarrow\operatorname{right[grandparent[z]]
    4: if col[uncle] = red then
    5:
    col[p[z]]}\leftarrow\mathrm{ black; col[u]}\leftarrow\mathrm{ black;
    col[gp[z]]}\leftarrow\mathrm{ red; z}\leftarrow\mathrm{ grandparent[z];
else
    if z=right[parent[z]] then
        z\leftarrow\textrm{p}[z]; LeftRotate(z);
    col[p[z]] \leftarrow black; col[gp[z]] \leftarrowred;
    RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: col(root[T]) \leftarrow black;
```


Red Black Trees: Insert

Algorithm 10 InsertFix (z)	
1: while parent $[z] \neq$ null and $\operatorname{col}[$ parent $[z]]=$ red do 2: if parent $[z]=\operatorname{left}[\mathrm{gp}[z]]$ then	
3:	uncle $\leftarrow \operatorname{right}[$ grandparent[z]]
4:	if col $[$ uncle $]=$ red then Case 1 : uncle red
5	$\operatorname{col}[\mathrm{p}[z]] \leftarrow$ black; $\operatorname{col}[u] \leftarrow$ black;
6:	$\operatorname{col}[\mathrm{gp}[z]] \leftarrow$ red; $z \leftarrow$ grandparent $[z]$;
7:	else
8:	if $z=\operatorname{right}[$ parent $[z]]$ then
9	$z \leftarrow \mathrm{p}[z]$; LeftRotate (z);
10:	$\operatorname{col}[\mathrm{p}[z]] \leftarrow$ black; $\operatorname{col}[\mathrm{gp}[z]] \leftarrow \mathrm{red}$;
11:	RightRotate(gp[z]);
	else same as then-clause but right and left exchanged
	$\operatorname{col}(\operatorname{root}[T]) \leftarrow$ black;

Red Black Trees: Insert

Red Black Trees: Insert

Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent \([z]]\)
    4: \(\quad\) if \(\operatorname{col}[\) uncle \(]=\) red then
    5:
    \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
    \(\operatorname{col}[\operatorname{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
else
    if \(z=\operatorname{right}[\) parent \([z]]\) then
        \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z)\);
        \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow\) red; \(2 \mathrm{~b}: z\) left child
    RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Case 1: Red Uncle

1. recolour

Case 1: Red Uncle

1. recolour

Case 1: Red Uncle

1. recolour
2. move z to grand-parent

Case 1: Red Uncle

1. recolour
2. move z to grand-parent
3. invariant is fulfilled for new z

Case 1: Red Uncle

1. recolour
2. move z to grand-parent
3. invariant is fulfilled for new z
4. you made progress

Case 2b: Black uncle and z is left child

Case 2b: Black uncle and z is left child

Case 2b: Black uncle and z is left child

1. rotate around grandparent

Case 2b: Black uncle and z is left child

1. rotate around grandparent
2. re-colour to ensure that black height property holds

Case 2b: Black uncle and z is left child

1. rotate around grandparent
2. re-colour to ensure that black height property holds
3. you have a red black tree

Case 2a: Black uncle and z is right child

Case 2a: Black uncle and z is right child

7.2 Red Black Trees

Case 2a: Black uncle and z is right child

1. rotate around parent

Case 2a: Black uncle and z is right child

1. rotate around parent
2. move z downwards

7.2 Red Black Trees

Case 2a: Black uncle and z is right child

1. rotate around parent
2. move z downwards
3. you have case 2 b .

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree
- Case $2 \mathrm{~b} \rightarrow$ red-black tree

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree
- Case $2 \mathrm{~b} \rightarrow$ red-black tree

Performing step one $\mathcal{O}(\log n)$ times and every other step at most once, we get a red-black tree. Hence $\mathcal{O}(\log n)$ re-colourings and at most 2 rotations.

Red Black Trees: Delete

Red Black Trees: Delete

First do a standard delete.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everyhting is fine.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everyhting is fine.
If it was black there may be the following problems.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everyhting is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everyhting is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everyhting is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

Red Black Trees: Delete

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorihtm

- the node z is black

Red Black Trees: Delete

Invariant of the fix-up algorihtm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Red Black Trees: Delete

Invariant of the fix-up algorihtm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled
Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Case 1: Sibling of z is red

Case 1: Sibling of z is red

Case 1: Sibling of z is red

1. left-rotate around parent of z

Case 1: Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c

Case 1: Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c
3. the new sibling is black (and parent of z is red)

Case 1: Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c
3. the new sibling is black (and parent of z is red)
4. Case 2 (special), or Case 3, or Case 4

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

1. re-color node c

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards
4. we made progress

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards
4. we made progress
5. if b is red we color it black and are done

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

sibling

E
F

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling
2. recolor c and d

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling
2. recolor c and d
3. new sibling is black with red right child (Case 4)

Case 4: Sibling is black with red right child

Case 4: Sibling is black with red right child

Case 4: Sibling is black with red right child

1. left-rotate around b

Case 4: Sibling is black with red right child

1. left-rotate around b
2. recolor nodes b, c, and e

Case 4: Sibling is black with red right child

1. left-rotate around b
2. recolor nodes b, c, and e
3. remove the fake black unit

Case 4: Sibling is black with red right child

1. left-rotate around b
2. recolor nodes b, c, and e
3. remove the fake black unit
4. you have a valid red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree

Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $4 \rightarrow$ red black tree

EADS

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $4 \rightarrow$ red black tree

Performing Case $2 \mathcal{O}(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colourings and at most 3 rotations.

7.3 AVL-Trees

Definition 15

AVL-trees are binary search trees that fulfill the following balance condition. For every node v

$$
\mid \text { height }(\text { left sub-tree }(v))-\operatorname{height}(\text { right sub-tree }(v)) \mid \leq 1 .
$$

7.3 AVL-Trees

Definition 15
AVL-trees are binary search trees that fulfill the following balance condition. For every node v

$$
\mid \text { height }(\text { left sub-tree }(v))-\operatorname{height}(\text { right sub-tree }(v)) \mid \leq 1 .
$$

Abstract

Lemma 16 An AVL-tree of height h contains at least $F_{h+2}-1$ and at most $2^{h}-1$ internal nodes, where F_{n} is the n-th Fibonacci number ($F_{0}=0, F_{1}=1$), and the height is the maximal number of edges from the root to an (empty) dummy leaf.

Proof.

The upper bound is clear, as a binary tree of height h can only contain

$$
\sum_{j=0}^{h-1} 2^{j}=2^{h}-1
$$

internal nodes.

Proof (cont.)

Induction (base cases):

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height $h=1$ contains at least one internal node, $1 \geq F_{3}-1=2-1=1$.

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height $h=1$ contains at least one internal node, $1 \geq F_{3}-1=2-1=1$.
2. an AVL tree of height $h=2$ contains at least two internal nodes, $2 \geq F_{4}-1=3-1=2$

Induction step:

An AVL-tree of height $h \geq 2$ of minimal size has a root with sub-trees of height $h-1$ and $h-2$, respectively. Both, sub-trees have minmal node number.

Induction step:

An AVL-tree of height $h \geq 2$ of minimal size has a root with sub-trees of height $h-1$ and $h-2$, respectively. Both, sub-trees have minmal node number.

Induction step:

An AVL-tree of height $h \geq 2$ of minimal size has a root with sub-trees of height $h-1$ and $h-2$, respectively. Both, sub-trees have minmal node number.

Let

$$
f_{h}:=1+\text { minimal size of AVL-tree of height } h .
$$

Induction step:

An AVL-tree of height $h \geq 2$ of minimal size has a root with sub-trees of height $h-1$ and $h-2$, respectively. Both, sub-trees have minmal node number.

Let

$$
f_{h}:=1+\text { minimal size of AVL-tree of height } h .
$$

Then

Induction step:

An AVL-tree of height $h \geq 2$ of minimal size has a root with sub-trees of height $h-1$ and $h-2$, respectively. Both, sub-trees have minmal node number.

Let

$$
f_{h}:=1+\text { minimal size of AVL-tree of height } h .
$$

Then

$$
f_{1}=2
$$

$$
=F_{3}
$$

Induction step:

An AVL-tree of height $h \geq 2$ of minimal size has a root with sub-trees of height $h-1$ and $h-2$, respectively. Both, sub-trees have minmal node number.

Let

$$
f_{h}:=1+\text { minimal size of AVL-tree of height } h .
$$

Then

$$
\begin{aligned}
& f_{1}=2 \\
& f_{2}=3
\end{aligned}
$$

$$
\begin{aligned}
& =F_{3} \\
& =F_{4}
\end{aligned}
$$

Induction step:

An AVL-tree of height $h \geq 2$ of minimal size has a root with sub-trees of height $h-1$ and $h-2$, respectively. Both, sub-trees have minmal node number.

Let

$$
f_{h}:=1+\text { minimal size of AVL-tree of height } h .
$$

Then

$$
\begin{aligned}
f_{1} & =2 & & =F_{3} \\
f_{2} & =3 & & =F_{4} \\
f_{h}-1 & =1+f_{h-1}-1+f_{h-2}-1, & & \text { hence }
\end{aligned}
$$

Induction step:

An AVL-tree of height $h \geq 2$ of minimal size has a root with sub-trees of height $h-1$ and $h-2$, respectively. Both, sub-trees have minmal node number.

Let

$$
f_{h}:=1+\text { minimal size of AVL-tree of height } h .
$$

Then

$$
\begin{aligned}
f_{1} & =2 & & =F_{3} \\
f_{2} & =3 & & =F_{4} \\
f_{h}-1 & =1+f_{h-1}-1+f_{h-2}-1, & & \text { hence } \\
f_{h} & =f_{h-1}+f_{h-2} & & =F_{h+2}
\end{aligned}
$$

7.3 AVL-Trees

Since

$$
F(k) \approx \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}
$$

an AVL-tree with n internal nodes has height $\Theta(\log n)$.

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the node. Let v denote a tree node with left child c_{ℓ} and right child c_{r}.

$$
\operatorname{balance}[v]:=\operatorname{height}\left(T_{c_{\ell}}\right)-\operatorname{height}\left(T_{c_{r}}\right),
$$

where $T_{\mathcal{C}_{\ell}}$ and $T_{\mathcal{c}_{r}}$, are the sub-trees rooted at c_{ℓ} and c_{r}, respectively.

Rotations

The properties will be maintained through rotations:

Double Rotations

AVL-trees: Insert

- Insert like in a binary search tree.

AVL-trees: Insert

- Insert like in a binary search tree.
- Let v denote the parent of the newly inserted node x.

AVL-trees: Insert

- Insert like in a binary search tree.
- Let v denote the parent of the newly inserted node x.
- One of the following cases holds:

$\operatorname{bal}(v)=-1$

$\operatorname{bal}(v)=0$

$\operatorname{bal}(v)=0$

AVL-trees: Insert

- Insert like in a binary search tree.
- Let v denote the parent of the newly inserted node x.
- One of the following cases holds:

$\operatorname{bal}(v)=-1$

$\operatorname{bal}(v)=0$

$\operatorname{bal}(v)=0$

- If $\operatorname{bal}[v] \neq 0, T_{v}$ has changed height; the balance-constraint may be violated at ancestors of v.

AVL-trees: Insert

- Insert like in a binary search tree.
- Let v denote the parent of the newly inserted node x.
- One of the following cases holds:

$\operatorname{bal}(v)=-1$

$\operatorname{bal}(v)=0$

$\operatorname{bal}(v)=0$

$\operatorname{bal}(v)=1$
- If $\operatorname{bal}[v] \neq 0, T_{v}$ has changed height; the balance-constraint may be violated at ancestors of v.
- Call fix-up(parent[$v]$) to restore the balance-condition.

AVL-trees: Insert

Invariant at the beginning fix-up(v):

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.
2. A node has been inserted into T_{c}, where c is either the right or left child of v.

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.
2. A node has been inserted into T_{c}, where c is either the right or left child of v.
3. $T_{\mathcal{C}}$ has increased its height by one (otw. we would already have aborted the fix-up procedure).

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.
2. A node has been inserted into T_{c}, where c is either the right or left child of v.
3. $T_{\mathcal{C}}$ has increased its height by one (otw. we would already have aborted the fix-up procedure).
4. The balance at the node c fulfills balance $[c] \in\{-1,1\}$. This holds because if the balance of c is 0 , then T_{c} did not change its height, and the whole procedure will have been aborted in the previous step.

AVL-trees: Insert

```
Algorithm 11 AVL-fix-up-insert(v)
    1: if balance[v]\in{-2,2} then DoRotationInsert(v);
    2: if balance[v] }\in{0}\mathrm{ return;
    3: AVL-fix-up-insert(parent[v]);
```

We will show that the above procedure is correct, and that it will do at most one rotation.

AVL-trees: Insert

```
Algorithm 12 DoRotationInsert(v)
    1: if balance[v] = -2 then
    2: if balance[right[v]] = -1 then
    3: LeftRotate(v);
    4: else
    5: DoubleLeftRotate(v);
    6: else
    7: if balance[left[v]] = 1 then
    8: RightRotate(v);
    9: else
10: DoubleRightRotate(v);
```


AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

We show that after doing a rotation at v :

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

We show that after doing a rotation at v :

- v fulfills balance condition.

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

We show that after doing a rotation at v :

- v fulfills balance condition.
- All children of v still fulfill the balance condition.

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

We show that after doing a rotation at v :

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- The height of T_{v} is the same as before the insert-operation took place.

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

We show that after doing a rotation at v :

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- The height of T_{v} is the same as before the insert-operation took place.

We only look at the case where the insert happened into the right sub-tree of v. The other case is symmetric.

AVL-trees: Insert

We have the following situation:

The right sub-tree of v has increased its height which results in a balance of -2 at v.

AVL-trees: Insert

We have the following situation:

The right sub-tree of v has increased its height which results in a balance of -2 at v.

Before the insertion the height of T_{v} was $h+1$.

Case 1: balance[right[v]] = -1

We do a left rotation at v

Case 1: balance[right[v]] = -1

We do a left rotation at v

Case 1: balance[right[v]] = -1

We do a left rotation at v

Case 1: balance[right[v]] = -1

We do a left rotation at v

Case 1: balance[right[v]] = -1

We do a left rotation at v

Now, T_{v} has height $h+1$ as before the insertion. Hence, we do not need to continue.

Case 2: balance[right[v]] = 1

Case 2: balance[right[v]] = 1

Case 2: balance[right[v]] = 1

Case 2: balance[right[v]] = 1

Case 2: balance[right[v]] = 1

Case 2: balance[right[v]] = 1

Case 2: balance[right[v]] = 1

Case 2: balance[right[v]] = 1

AVL-trees: Delete

- Delete like in a binary search tree.

AVL-trees: Delete

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.

AVL-trees: Delete

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.

AVL-trees: Delete

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- Initially, the node c-the new root in the sub-tree that has changed - is either a dummy leaf or a node with two dummy leafs as children.

Case 1

Case 2

In both cases bal $[c]=0$.

AVL-trees: Delete

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- Initially, the node c-the new root in the sub-tree that has changed - is either a dummy leaf or a node with two dummy leafs as children.

Case 1

Case 2

In both cases bal $[c]=0$.

- Call fix-up(v) to restore the balance-condition.

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.
2. A node has been deleted from T_{c}, where c is either the right or left child of v.

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.
2. A node has been deleted from T_{c}, where c is either the right or left child of v.
3. $T_{\mathcal{C}}$ has either decreased its height by one or it has stayed the same (note that this is clear right after the deletion but we have to make sure that it also holds after the rotations done within $T_{\mathcal{C}}$ in previous iterations).

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.
2. A node has been deleted from T_{c}, where c is either the right or left child of v.
3. $T_{\mathcal{C}}$ has either decreased its height by one or it has stayed the same (note that this is clear right after the deletion but we have to make sure that it also holds after the rotations done within $T_{\mathcal{C}}$ in previous iterations).
4. The balance at the node c fulfills balance $[c]=\{0\}$. This holds because if the balance of c is in $\{-1,1\}$, then T_{c} did not change its height, and the whole procedure will have been aborted in the previous step.

AVL-trees: Delete

```
Algorithm 13 AVL-fix-up-delete(v)
    1: if balance[v]\in{-2,2} then DoRotationDelete (v);
    2: if balance[v] }\in{-1,1}\mathrm{ return;
    3: AVL-fix-up-delete(parent[v]);
```


AVL-trees: Delete

```
Algorithm 13 AVL-fix-up-delete(v)
    1: if balance[v]\in{-2,2} then DoRotationDelete (v);
    2: if balance[v] }\in{-1,1} return
    3: AVL-fix-up-delete(parent[v]);
```

We will show that the above procedure is correct. However, for the case of a delete there may be a logarithmic number of rotations.

AVL-trees: Delete

```
Algorithm 14 DoRotationDelete(v)
    1: if balance[v] = -2 then
    2: if balance[right[v]] = -1 then
    3: LeftRotate(v);
    4: else
    5: DoubleLeftRotate(v);
    6: else
    7: if balance[left[v]]={0,1} then
    8: RightRotate(v);
    9: else
10: DoubleRightRotate(v);
```


AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v :

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v :

- v fulfills balance condition.

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v :

- v fulfills balance condition.
- All children of v still fulfill the balance condition.

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v :

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- If now balance $[v] \in\{-1,1\}$ we can stop as the height of T_{v} is the same as before the deletion.

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v :

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- If now balance $[v] \in\{-1,1\}$ we can stop as the height of T_{v} is the same as before the deletion.

We only look at the case where the deleted node was in the right sub-tree of v. The other case is symmetric.

AVL-trees: Delete

We have the following situation:

The right sub-tree of v has decreased its height which results in a balance of 2 at v.

AVL-trees: Delete

We have the following situation:

The right sub-tree of v has decreased its height which results in a balance of 2 at v.

Before the insertion the height of T_{v} was $h+2$.

Case 1: balance[left[v]] $\in\{0,1\}$

Case 1: balance[left[v]] $\in\{0,1\}$

Case 1: balance[left[v]] $\in\{0,1\}$

Case 1: balance[left[v]] $\in\{0,1\}$

Case $1:$ balance[left[v]] $\in\{0,1\}$

If the middle subtree has height h the whole tree has height $h+2$ as before the deletion. The iteration stops as the balance at the root is non-zero.

Case $1:$ balance $[$ left $[v]] \in\{0,1\}$

If the middle subtree has height h the whole tree has height $h+2$ as before the deletion. The iteration stops as the balance at the root is non-zero.

If the middle subtree has height $h-1$ the whole tree has decreased its height from $h+2$ to $h+1$. We do continue the fix-up procedure as the balance at the root is zero.

Case 2: balance[left[v]] = -1

Case 2: balance[left[v]] = -1

Case 2: balance[left[v]] = -1

Case 2: balance[left[v]] = -1

Case 2: balance[left[v]] = -1

Case 2: balance[left[v]] = -1

Case 2: balance[left[v]] = -1

Case 2: balance[left[v]] = - 1

Sub-tree has height $h+1$, i.e., it has shrunk. The balance at y is zero. We continue the iteration.

7.4 ($a, b)$-trees

Definition 17

For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

7.4 ($a, b)$-trees

Definition 17

For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root

7.4 ($a, b)$-trees

Definition 17
For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex v has at least a and at most b children

$7.4(a, b)$-trees

Definition 17
For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex v has at least a and at most b children
3. the root has degree at least 2 if the tree is non-empty

$7.4(a, b)$-trees

Definition 17
For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex v has at least a and at most b children
3. the root has degree at least 2 if the tree is non-empty
4. the internal vertices do not contain data, but only keys (external search tree)

$7.4(a, b)$-trees

Definition 17
For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex v has at least a and at most b children
3. the root has degree at least 2 if the tree is non-empty
4. the internal vertices do not contain data, but only keys (external search tree)
5. there is a special dummy leaf node with key-value ∞

7.4 ($a, b)$-trees

Each internal node v with $d(v)$ children stores $d-1$ keys $k_{1}, \ldots, k_{d}-1$. The i-th subtree of v fulfills

$$
k_{i-1}<\text { key in } i \text {-th sub-tree } \leq k_{i},
$$

where we use $k_{0}=-\infty$ and $k_{d}=\infty$.

7.4 ($a, b)$-trees

Example 18

7.4 ($a, b)$-trees

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.

7.4 ($a, b)$-trees

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.
- Variants in which $b=2 a$ are commonly referred to as B-trees.

$7.4(a, b)$-trees

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.
- Variants in which $b=2 a$ are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.

$7.4(a, b)$-trees

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.
- Variants in which $b=2 a$ are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B^{+}tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.

7.4 (a,b)-trees

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.
- Variants in which $b=2 a$ are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B^{+}tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A B^{*} tree requires that a node is at least $2 / 3$-full as only $1 / 2$-full (the requirement of a B-tree).

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

$$
\text { 1. } 2 a^{h-1} \leq n+1 \leq b^{h}
$$

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2 a^{h-1} \leq n+1 \leq b^{h}$
2. $\log _{b}(n+1) \leq h \leq \log _{a}\left(\frac{n+1}{2}\right)$

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2 a^{h-1} \leq n+1 \leq b^{h}$
2. $\log _{b}(n+1) \leq h \leq \log _{a}\left(\frac{n+1}{2}\right)$

Proof.

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2 a^{h-1} \leq n+1 \leq b^{h}$
2. $\log _{b}(n+1) \leq h \leq \log _{a}\left(\frac{n+1}{2}\right)$

Proof.

- If $n>0$ the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2 a^{h-1}$.

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2 a^{h-1} \leq n+1 \leq b^{h}$
2. $\log _{b}(n+1) \leq h \leq \log _{a}\left(\frac{n+1}{2}\right)$

Proof.

- If $n>0$ the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2 a^{h-1}$.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^{h}.

Search

Search

Search(8)

Search

Search（8）

Search

Search(19)

Search

Search(19)

Search

The search is straightforward. It is only important that you need to go all the way to the leaf.

Search

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h)=\mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Insert

Insert element x :

- Follow the path as if searching for $\operatorname{key}[x]$.

Insert

Insert element x :

- Follow the path as if searching for $\operatorname{key}[x]$.
- If this search ends in leaf ℓ, insert x before this leaf.

Insert

Insert element x :

- Follow the path as if searching for $\operatorname{key}[x]$.
- If this search ends in leaf ℓ, insert x before this leaf.
- For this add $\operatorname{key}[x]$ to the key-list of the last internal node v on the path.

Insert

Insert element x :

- Follow the path as if searching for $\operatorname{key}[x]$.
- If this search ends in leaf ℓ, insert x before this leaf.
- For this add $\operatorname{key}[x]$ to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance (v).

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and v_{2}. v_{1} gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and v_{2}. v_{1} gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.
- Both nodes get at least $\left\lfloor\frac{b-1}{2}\right\rfloor$ keys, and have therefore degree at least $\left\lfloor\frac{b-1}{2}\right\rfloor+1 \geq a$ since $b \geq 2 a-1$.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and v_{2}. v_{1} gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.
- Both nodes get at least $\left\lfloor\frac{b-1}{2}\right\rfloor$ keys, and have therefore degree at least $\left\lfloor\frac{b-1}{2}\right\rfloor+1 \geq a$ since $b \geq 2 a-1$.
- They get at most $\left\lceil\frac{b-1}{2}\right\rceil$ keys, and have therefore degree at most $\left\lceil\frac{b-1}{2}\right\rceil+1 \leq b($ since $b \geq 2)$.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and v_{2}. v_{1} gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.
- Both nodes get at least $\left\lfloor\frac{b-1}{2}\right\rfloor$ keys, and have therefore degree at least $\left\lfloor\frac{b-1}{2}\right\rfloor+1 \geq a$ since $b \geq 2 a-1$.
- They get at most $\left\lceil\frac{b-1}{2}\right\rceil$ keys, and have therefore degree at $\operatorname{most}\left\lceil\frac{b-1}{2}\right\rceil+1 \leq b$ (since $b \geq 2$).
- The key k_{j} is promoted to the parent of v. The current pointer to v is altered to point to v_{1}, and a new pointer (to the right of k_{j}) in the parent is added to point to v_{2}.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and v_{2}. v_{1} gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.
- Both nodes get at least $\left\lfloor\frac{b-1}{2}\right\rfloor$ keys, and have therefore degree at least $\left\lfloor\frac{b-1}{2}\right\rfloor+1 \geq a$ since $b \geq 2 a-1$.
- They get at most $\left\lceil\frac{b-1}{2}\right\rceil$ keys, and have therefore degree at $\operatorname{most}\left\lceil\frac{b-1}{2}\right\rceil+1 \leq b$ (since $b \geq 2$).
- The key k_{j} is promoted to the parent of v. The current pointer to v is altered to point to v_{1}, and a new pointer (to the right of k_{j}) in the parent is added to point to v_{2}.
- Then, re-balance the parent.

Insert

Insert

Insert(8)

Insert

Insert

Insert(6)

Insert

Insert(6)

Insert

Insert(6)

Insert

Insert(6)

Insert

Insert(7)

Delete

Delete element x (pointer to leaf vertex):

- Let v denote the parent of x. If $\operatorname{key}[x]$ is contained in v, remove the key from v, and delete the leaf vertex.

Delete

Delete element x (pointer to leaf vertex):

- Let v denote the parent of x. If key $[x]$ is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key $[x]$ in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).

Delete

Delete element x (pointer to leaf vertex):

- Let v denote the parent of x. If $\operatorname{key}[x]$ is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key $[x]$ in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- If now the number of keys in v is below $a-1$ perform Rebalance' (v).

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most $(a-2)+(a-1)+1$ keys, and has therefore at most $2 a-1 \leq b$ successors.

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most $(a-2)+(a-1)+1$ keys, and has therefore at most $2 a-1 \leq b$ successors.
- Then rebalance the parent.

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most $(a-2)+(a-1)+1$ keys, and has therefore at most $2 a-1 \leq b$ successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Delete

Delete

Delete(10)

Delete

Delete(10)

Delete

Delete(10)

Delete

Delete

Delete(14)

Delete

Delete

Delete(3)

Delete

Delete

Delete(1)

Delete

Delete(1)

Delete

Delete(1)

Delete

Delete

Delete(19)

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2,4)-tree.

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. Θ (1)

7.5 Skip Lists

How can we improve the search-operation?

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

EADS

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

Let $\left|L_{1}\right|$ denote the number of elements in the "express lane", and $\left|L_{0}\right|=n$ the number of all elements (ignoring dummy elements).

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

Let $\left|L_{1}\right|$ denote the number of elements in the "express lane", and $\left|L_{0}\right|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $\left|L_{1}\right|+\frac{\left|L_{0}\right|}{\left|L_{1}\right|}$ (ignoring additive constants)

7.5 Skip Lists

How can we improve the search-operation?
Add an express lane:

Let $\left|L_{1}\right|$ denote the number of elements in the "express lane", and $\left|L_{0}\right|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $\left|L_{1}\right|+\frac{\left|L_{0}\right|}{\left|L_{1}\right|}$ (ignoring additive constants)
Choose $\left|L_{1}\right|=\sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

7.5 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

7.5 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.
$\operatorname{Search}(\mathrm{x})\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

7.5 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(x)\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.

7.5 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(x)\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.

7.5 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(\mathrm{x})\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-2}\right|}{\left|L_{k-1}\right|+1}\right\rceil+2$ steps.

7.5 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(x)\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-2}\right|}{\left|L_{k-1}\right|+1}\right\rceil+2$ steps.
- ...

7.5 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(x)\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-2}\right|}{\left|L_{k-1}\right|+1}\right\rceil+2$ steps.
- At most $\left|L_{k}\right|+\sum_{i=1}^{k} \frac{L_{i-1}}{L_{i}}+3(k+1)$ steps.

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$. Choose

$$
r=\sqrt[k+1]{n} \quad \Longrightarrow \quad \text { time: } \mathcal{O}(k \sqrt[k+1]{n})
$$

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$. Choose

$$
r=\sqrt[k+1]{n} \quad \Longrightarrow \quad \text { time: } \mathcal{O}(k \sqrt[k+1]{n})
$$

Choosing $k=\Theta(\log k)$ gives a logarithmic running time.

7.5 Skip Lists

How to do insert and delete?

7.5 Skip Lists

How to do insert and delete?

- If we want that in L_{i} we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

7.5 Skip Lists

How to do insert and delete?

- If we want that in L_{i} we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

7.5 Skip Lists

Insert:

7.5 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.

7.5 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.

7.5 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

7.5 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

Delete:

7.5 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.

7.5 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists in actually appears in.

7.5 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

Skip Lists

Insert (35):

7.5 Skip Lists

Lemma 20

A search (and, hence, also insert and delete) in a skip list with n elements takes time $\mathcal{O}(\operatorname{logn})$ with high probability (w. h. p.).

7.5 Skip Lists

Lemma 20

A search (and, hence, also insert and delete) in a skip list with n elements takes time $\mathcal{O}(\operatorname{logn})$ with high probability (w. h. p.).

This means for any constant α the search takes time $\mathcal{O}(\log n)$ with probability at least $1-\frac{1}{n^{\alpha}}$.

Note that the constant in the \mathcal{O}-notation may depend on α.

High Probability

Suppose there are a polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

High Probability

Suppose there are a polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probabilityx that all E_{i} hold is at least

$$
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right]
$$

High Probability

Suppose there are a polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probabilityx that all E_{i} hold is at least

$$
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right]=1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right]
$$

High Probability

Suppose there are a polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probabilityx that all E_{i} hold is at least

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right] & =1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right] \\
& \leq 1-n^{c} \cdot n^{-\alpha}
\end{aligned}
$$

High Probability

Suppose there are a polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probabilityx that all E_{i} hold is at least

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right] & =1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right] \\
& \leq 1-n^{c} \cdot n^{-\alpha} \\
& =1-n^{c-\alpha} .
\end{aligned}
$$

High Probability

Suppose there are a polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probabilityx that all E_{i} hold is at least

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right] & =1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right] \\
& \leq 1-n^{c} \cdot n^{-\alpha} \\
& =1-n^{c-\alpha}
\end{aligned}
$$

This means $\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right]$ holds with high probability.

Skip Lists

Backward analysis:

$-\infty \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow \leftrightarrow 26 \leftrightarrow 43 \leftrightarrow 43$

Skip Lists

Backward analysis:

$-\infty \leftrightarrow 5 \leftrightarrow 8 \leftrightarrow 10 \leftrightarrow 12 \leftrightarrow 14 \leftrightarrow 18 \leftrightarrow 23 \leftrightarrow 26 \leftrightarrow 28 \leftrightarrow 35 \leftrightarrow 43 \leftrightarrow \infty$

Skip Lists

Backward analysis:

Skip Lists

Backward analysis:

$-\infty \leftrightarrow 5 \leftrightarrow 8 \leftrightarrow 10 \leftrightarrow 12 \leftrightarrow 14 \leftrightarrow 18 \leftrightarrow 23 \leftrightarrow 26 \leftrightarrow 28 \leftrightarrow 35 \leftrightarrow 43 \leftrightarrow \infty$

Skip Lists

Backward analysis:

Skip Lists

Backward analysis:

Skip Lists

Backward analysis:

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

Skip Lists

Backward analysis:

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

We show that w.h.p:

- A "long" search path must also go very high.

Skip Lists

Backward analysis:

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

Skip Lists

Backward analysis:

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

7.5 Skip Lists

7.5 Skip Lists

Let $E_{z, k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_{k}.

7.5 Skip Lists

Let $E_{z, k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_{k}.

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

7.5 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right]
$$

7.5 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[\text { at most } k \text { heads in } z \text { trials }]
$$

7.5 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials]

$$
\leq\binom{ z}{k} 2^{-(z-k)}
$$

7.5 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials]

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)}
$$

7.5 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials $]$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

7.5 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[\text { at most } k \text { heads in } z \text { trials }]
$$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

7．5 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[\text { at most } k \text { heads in } z \text { trials }]
$$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\leq\left(\frac{2 e z}{k}\right)^{k}\left(2^{-\beta}\right)^{k} \cdot n^{-\alpha}
$$

7.5 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[\text { at most } k \text { heads in } z \text { trials }]
$$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\leq\left(\frac{2 e z}{k}\right)^{k}\left(2^{-\beta}\right)^{k} \cdot n^{-\alpha} \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
$$

7.5 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[\text { at most } k \text { heads in } z \text { trials }]
$$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\leq\left(\frac{2 e z}{k}\right)^{k}\left(2^{-\beta}\right)^{k} \cdot n^{-\alpha} \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
$$

now choosing $\beta=6 \alpha$ gives

7.5 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[\text { at most } k \text { heads in } z \text { trials }]
$$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\leq\left(\frac{2 e z}{k}\right)^{k}\left(2^{-\beta}\right)^{k} \cdot n^{-\alpha} \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
$$

now choosing $\beta=6 \alpha$ gives

$$
\leq\left(\frac{42 \alpha}{64^{\alpha}}\right)^{k} n^{-\alpha}
$$

7.5 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[\text { at most } k \text { heads in } z \text { trials }]
$$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\leq\left(\frac{2 e z}{k}\right)^{k}\left(2^{-\beta}\right)^{k} \cdot n^{-\alpha} \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
$$

now choosing $\beta=6 \alpha$ gives

$$
\leq\left(\frac{42 \alpha}{64^{\alpha}}\right)^{k} n^{-\alpha} \leq n^{-\alpha}
$$

7.5 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[\text { at most } k \text { heads in } z \text { trials }]
$$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\leq\left(\frac{2 e z}{k}\right)^{k}\left(2^{-\beta}\right)^{k} \cdot n^{-\alpha} \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
$$

now choosing $\beta=6 \alpha$ gives

$$
\leq\left(\frac{42 \alpha}{64^{\alpha}}\right)^{k} n^{-\alpha} \leq n^{-\alpha}
$$

for $\alpha \geq 1$.

7.5 Skip Lists

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the even A_{k+1} must hold.

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the even A_{k+1} must hold. Hence,
$\operatorname{Pr}[$ search requires z steps]

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the even A_{k+1} must hold. Hence,

$$
\operatorname{Pr}[\text { search requires } z \text { steps }] \leq \operatorname{Pr}\left[E_{z, k}\right]+\operatorname{Pr}\left[A_{k+1}\right]
$$

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the even A_{k+1} must hold. Hence,

$$
\begin{aligned}
\operatorname{Pr}[\text { search requires } z \text { steps }] & \leq \operatorname{Pr}\left[E_{z, k}\right]+\operatorname{Pr}\left[A_{k+1}\right] \\
& \leq n^{-\alpha}+n^{-(\gamma-1)}
\end{aligned}
$$

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the even A_{k+1} must hold. Hence,

$$
\begin{aligned}
\operatorname{Pr}[\text { search requires } z \text { steps }] & \leq \operatorname{Pr}\left[E_{z, k}\right]+\operatorname{Pr}\left[A_{k+1}\right] \\
& \leq n^{-\alpha}+n^{-(\gamma-1)}
\end{aligned}
$$

This means, the search requires at most z steps, w.h.p.

7.6 Augmenting Data Structures

Suppose you want to develop a data structure with:

- Insert(\boldsymbol{x}): insert element x.
- Search (k) : search for element with key k.
- Delete (x) : delete element referenced by pointer x.
- find-by-rank (ℓ) : return the k-th element; return "error" if the data-structure contains less than k elements.

7.6 Augmenting Data Structures

Suppose you want to develop a data structure with:

- Insert(\boldsymbol{x}): insert element x.
- Search (k): search for element with key k.
- Delete (\boldsymbol{x}) : delete element referenced by pointer x.
- find-by-rank (ℓ): return the k-th element; return "error" if the data-structure contains less than k elements.

Augment an existing data-structure instead of developing a new one.

7.6 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

7.6 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure
2. determine additional information to be stored in the underlying structure

7.6 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure
2. determine additional information to be stored in the underlying structure
3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.

7.6 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure
2. determine additional information to be stored in the underlying structure
3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
4. develop the new operations

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

1. We choose a red-black tree as the underlying data-structure.

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

1. We choose a red-black tree as the underlying data-structure.
2. We store in each node v the size of the sub-tree rooted at v.

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

1. We choose a red-black tree as the underlying data-structure.
2. We store in each node v the size of the sub-tree rooted at v.
3. We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
4. How does find-by-rank work?

Find-by-rank (k) := Select (root, k) with

```
Algorithm \(15 \operatorname{Select}(x, i)\)
    1: if \(x=\) null then return error
    2: if left \([x] \neq\) null then \(r \leftarrow \operatorname{left}[x]\). size +1 else \(r \leftarrow 1\)
    3: if \(i=r\) then return \(x\)
    4: if \(i<r\) then
    5: \(\quad\) return Select \((\operatorname{left}[x], i)\)
    6: else
    7: \(\quad\) return Select \((\operatorname{right}[x], i-r)\)
```


Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

Search (k): Nothing to do.

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

Search (k): Nothing to do.
Insert (\boldsymbol{x}): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

Search (k): Nothing to do.
Insert (\boldsymbol{x}): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Delete (x) : Directly after splicing out a node traverse the path from the spliced out node upwards, and decrease the size counter on every node on this path. Maintain the size field during rotations.

Rotations

The only operation during the fix-up procedure that alters the tree and requires an update of the size-field:

The nodes x and z are the only nodes changing their size-fields. The new size-fields can be computed locally from the size-fields of the children.

7.7 Hashing

Dictionary:

- S.insert(x): Insert an element x.
- S.delete (x) : Delete the element pointed to by x.
- S.search (k): Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

7.7 Hashing

Dictionary:

- S.insert(x): Insert an element x.
- S.delete (x) : Delete the element pointed to by x.
- S.search(\boldsymbol{k}): Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

7.7 Hashing

Dictionary:

- S.insert(x): Insert an element x.
- S.delete (x) : Delete the element pointed to by x.
- S.search(\boldsymbol{k}): Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

7.7 Hashing

Dictionary:

- S.insert (\boldsymbol{x}) : Insert an element x.
- S.delete (x) : Delete the element pointed to by x.
- S.search(\boldsymbol{k}): Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq n$.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq n$.
- Array $T[0, \ldots, n-1]$ hash-table.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq n$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq n$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

The hash-function \boldsymbol{h} should fulfill:

- Fast to evaluate.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq n$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

The hash-function \boldsymbol{h} should fulfill:

- Fast to evaluate.
- Small storage requirement.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq n$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

The hash-function \boldsymbol{h} should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.

7.7 Hashing

Ideally the hash function maps all keys to different memory locations.

This special case is known as Direct Addressing. It is usually very unrealistic as the universe of keys typically is quite large, and in particular larger than the available memory.

7.7 Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.

Such a hash function h is called a perfect hash function for set S.

7.7 Hashing

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

7.7 Hashing

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

7.7 Hashing

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.
Hence, there may be two elements k_{1}, k_{2} from the set S that map to the same memory location (i.e., $h\left(k_{1}\right)=h\left(k_{2}\right)$). This is called a collision.

7.7 Hashing

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already once $|S| \geq \omega(\sqrt{n})$.

7.7 Hashing

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already once $|S| \geq \omega(\sqrt{n})$.

Lemma 21

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$
1-e^{-\frac{m(m-1)}{2}} \approx 1-e^{-\frac{m^{2}}{2 n}} .
$$

7.7 Hashing

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already once $|S| \geq \omega(\sqrt{n})$.

Lemma 21

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$
1-e^{-\frac{m(m-1)}{2}} \approx 1-e^{-\frac{m^{2}}{2 n}}
$$

Uniform hashing:

Choose a hash function uniformly at random from all functions $f: U \rightarrow[0, \ldots, n-1]$.

7.7 Hashing

Proof.
Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

7.7 Hashing

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\operatorname{Pr}\left[A_{m, n}\right]
$$

7.7 Hashing

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\operatorname{Pr}\left[A_{m, n}\right]=\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}
$$

7.7 Hashing

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\operatorname{Pr}\left[A_{m, n}\right]=\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right)
$$

7.7 Hashing

Proof.
Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m, n}\right] & =\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right) \\
& \leq \prod_{j=0}^{m-1} e^{-j / n}
\end{aligned}
$$

7.7 Hashing

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m, n}\right] & =\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right) \\
& \leq \prod_{j=0}^{m-1} e^{-j / n}=e^{-\sum_{j=0}^{m-1} \frac{j}{n}}
\end{aligned}
$$

7.7 Hashing

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m, n}\right] & =\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right) \\
& \leq \prod_{j=0}^{m-1} e^{-j / n}=e^{-\sum_{j=0}^{m-1} \frac{j}{n}}=e^{-\frac{m(m-1)}{2 n}} .
\end{aligned}
$$

7.7 Hashing

Proof.
Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m, n}\right] & =\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right) \\
& \leq \prod_{j=0}^{m-1} e^{-j / n}=e^{-\sum_{j=0}^{m-1} \frac{j}{n}}=e^{-\frac{m(m-1)}{2 n}} .
\end{aligned}
$$

Here the first equality follows since the ℓ-th element that is hashed has a probability of $\frac{n-\ell+1}{n}$ to not generate a collision under the condition that the previous elements did not induce collisions.

The inequality $1-x \leq e^{-x}$ is derived by stopping the tayler-expansion of e^{-x} after the second term.

Resolving Collisions

The methods for dealing with collisions can be classified into the two main types

- open addressing, aka. closed hashing
- hashing with chaining. aka. closed addressing, open hashing.

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

- Access: compute $h(x)$ and search list for key $[x]$.
- Insert: insert at the front of the list.

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the following notation:

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the following notation:

- A^{+}denotes the average time for a successful search when using A;

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the following notation:

- A^{+}denotes the average time for a successful search when using A;
- A^{-}denotes the average time for an unsuccessful search when using A;

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the following notation:

- A^{+}denotes the average time for a successful search when using A;
- A^{-}denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha:=\frac{m}{n}$, the so-called fill factor of the hash-table.

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the following notation:

- A^{+}denotes the average time for a successful search when using A;
- A^{-}denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha:=\frac{m}{n}$, the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined.

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha=\frac{m}{n}$.

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha=\frac{m}{n}$. Hence, if A is the collision resolving strategy "Hashing with Chaining" we have

$$
A^{-}=1+\alpha
$$

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha=\frac{m}{n}$. Hence, if A is the collision resolving strategy "Hashing with Chaining" we have

$$
A^{-}=1+\alpha
$$

Note that this result does not depend on the hash-function that is used.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.
Let for two keys k_{i} and $k_{j}, X_{i j}$ denote the event that i and j hash to the same position. Clearly, $\operatorname{Pr}\left[X_{i j}=1\right]=1 / n$ for uniform hashing.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.
Let for two keys k_{i} and $k_{j}, X_{i j}$ denote the event that i and j hash to the same position. Clearly, $\operatorname{Pr}\left[X_{i j}=1\right]=1 / n$ for uniform hashing.

The expected successful search cost is

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]
$$

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.
Let for two keys k_{i} and $k_{j}, X_{i j}$ denote the event that i and j hash to the same position. Clearly, $\operatorname{Pr}\left[X_{i j}=1\right]=1 / n$ for uniform hashing.

The expected successful search cost is
keys before k_{i}

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]
$$

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.
Let for two keys k_{i} and $k_{j}, X_{i j}$ denote the event that i and j hash to the same position. Clearly, $\operatorname{Pr}\left[X_{i j}=1\right]=1 / n$ for uniform hashing.

The expected successful search cost is

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]_{\substack{\text { cost for key } k_{i}}}
$$

Hashing with Chaining

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]
$$

Hashing with Chaining

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]=\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right)
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right)
\end{aligned}
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i)
\end{aligned}
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i) \\
& =1+\frac{1}{m n}\left(m^{2}-\frac{m(m+1)}{2}\right)
\end{aligned}
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i) \\
& =1+\frac{1}{m n}\left(m^{2}-\frac{m(m+1)}{2}\right) \\
& =1+\frac{m-1}{2 n}=1+\frac{\alpha}{2}-\frac{\alpha}{2 m}
\end{aligned}
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i) \\
& =1+\frac{1}{m n}\left(m^{2}-\frac{m(m+1)}{2}\right) \\
& =1+\frac{m-1}{2 n}=1+\frac{\alpha}{2}-\frac{\alpha}{2 m}
\end{aligned}
$$

Hence, the expected cost for a successful search is $A^{+} \leq 1+\frac{\alpha}{2}$.

Open Addressing

Open Addressing

All objects are stored in the table itself.

Open Addressing

All objects are stored in the table itself.
Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ form a permutation of $0, \ldots, n-1$.

Open Addressing

All objects are stored in the table itself.
Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ form a permutation of $0, \ldots, n-1$.

Search (\boldsymbol{k}) : Try position $h(k, 0)$; if it is empty your search fails; otw. continue with $h(k, 1), h(k, 2), \ldots$

Open Addressing

All objects are stored in the table itself.
Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ form a permutation of $0, \ldots, n-1$.

Search (\boldsymbol{k}) : Try position $h(k, 0)$; if it is empty your search fails; otw. continue with $h(k, 1), h(k, 2), \ldots$

Insert (x): Search until you find an empty slot; insert your element there. If your search reaches $h(k, n-1)$, and this slot is non-empty then your table is full.

Open Addressing

Choices for $h(k, j)$:

- $h(k, i)=h(k)+i \bmod n$. Linear probing.

Open Addressing

Choices for $h(k, j)$:

- $h(k, i)=h(k)+i \bmod n$. Linear probing.
- $h(k, i)=h(k)+c_{1} i+c_{2} i^{2} \bmod n$. Quadratic probing.

Open Addressing

Choices for $h(k, j)$:

- $h(k, i)=h(k)+i \bmod n$. Linear probing.
- $h(k, i)=h(k)+c_{1} i+c_{2} i^{2} \bmod n$. Quadratic probing.
- $h(k, i)=h_{1}(k)+i h_{2}(k) \bmod n$. Double hashing.

Open Addressing

Choices for $h(k, j)$:

- $h(k, i)=h(k)+i \bmod n$. Linear probing.
- $h(k, i)=h(k)+c_{1} i+c_{2} i^{2} \bmod n$. Quadratic probing.
- $h(k, i)=h_{1}(k)+i h_{2}(k) \bmod n$. Double hashing.

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_{2}(k)$ must be relatively prime to n; for quadratic probing c_{1} and c_{2} have to be chosen carefully).

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 22
Let L be the method of linear probing for resolving collisions:

$$
\begin{aligned}
& L^{+} \approx \frac{1}{2}\left(1+\frac{1}{1-\alpha}\right) \\
& L^{-} \approx \frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right)
\end{aligned}
$$

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 23

Let Q be the method of quadratic probing for resolving collisions:

$$
\begin{aligned}
& Q^{+} \approx 1+\ln \left(\frac{1}{1-\alpha}\right)-\frac{\alpha}{2} \\
& Q^{-} \approx \frac{1}{1-\alpha}+\ln \left(\frac{1}{1-\alpha}\right)-\alpha
\end{aligned}
$$

Double Hashing

- Any probe into the hash-table usually creates a cash-miss.

Double Hashing

- Any probe into the hash-table usually creates a cash-miss.

Lemma 24
Let A be the method of double hashing for resolving collisions:

$$
\begin{aligned}
& D^{+} \approx \frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha}\right) \\
& D^{-} \approx \frac{1}{1-\alpha}
\end{aligned}
$$

7.7 Hashing

Some values:

α	Linear Probing		Quadratic Probing		Double Hashing	
	L^{+}	L^{-}	Q^{+}	Q^{-}	D^{+}	D^{-}
0.5	1.5	2.5	1.44	2.19	1.39	2
0.9	5.5	50.5	2.85	11.40	2.55	10
0.95	10.5	200.5	3.52	22.05	3.15	20

7.7 Hashing

7.7 Hashing

Analysis of Idealized Open Address Hashing

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i_{1}}\right]
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i_{1}}\right] \\
&= \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] . \\
& \ldots \cdot \operatorname{Pr}\left[A_{i_{1}} \mid A_{1} \cap \cdots \cap A_{i-2}\right]
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i_{1}}\right] \\
&= \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] . \\
& \ldots \cdot \operatorname{Pr}\left[A_{i_{1}} \mid A_{1} \cap \cdots \cap A_{i-2}\right]
\end{aligned}
$$

$$
\operatorname{Pr}[X \geq i]
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i_{1}}\right] \\
&= \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] . \\
& \ldots \cdot \operatorname{Pr}\left[A_{i_{1}} \mid A_{1} \cap \cdots \cap A_{i-2}\right] \\
& \operatorname{Pr}[X \geq i]= \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \ldots \cdot \frac{m-i+2}{n-i+2}
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i_{1}}\right] \\
&= \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] . \\
& \ldots \cdot \operatorname{Pr}\left[A_{i_{1}} \mid A_{1} \cap \cdots \cap A_{i-2}\right] \\
& \operatorname{Pr}[X \geq i]= \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \ldots \cdot \frac{m-i+2}{n-i+2} \\
& \leq\left(\frac{m}{n}\right)^{i-1}
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i_{1}}\right] \\
&= \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] . \\
& \ldots \cdot \operatorname{Pr}\left[A_{i_{1}} \mid A_{1} \cap \cdots \cap A_{i-2}\right] \\
& \operatorname{Pr}[X \geq i]= \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \ldots \cdot \frac{m-i+2}{n-i+2} \\
& \leq\left(\frac{m}{n}\right)^{i-1}=\alpha^{i-1} .
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

$\mathrm{E}[X]$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i]
$$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}
$$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}
$$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha} .
$$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha} .
$$

Analysis of Idealized Open Address Hashing

$$
\begin{gathered}
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha} . \\
\frac{1}{1-\alpha}=1+\alpha+\alpha^{2}+\alpha^{3}+\ldots
\end{gathered}
$$

$i=1$

$i=2$

$i=3$

$i=4$

$i=1$

$i=2$

$i=3$

$i=4$

The j-th rectangle appears in both sums j times. (j times in the first due to multiplication with j; and j times in the second for summands $i=1,2, \ldots, j$)

Analysis of Idealized Open Address Hashing

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i}=\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i}=\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}=\frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\begin{aligned}
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} & =\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}=\frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k} \\
& \leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\begin{aligned}
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} & =\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}=\frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k} \\
& \leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \mathrm{~d} x=\frac{1}{\alpha} \ln \frac{n}{n-m}
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\begin{aligned}
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} & =\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}=\frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k} \\
& \leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \mathrm{~d} x=\frac{1}{\alpha} \ln \frac{n}{n-m}=\frac{1}{\alpha} \ln \frac{1}{1-\alpha} .
\end{aligned}
$$

7.7 Hashing

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.

7.7 Hashing

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.
- For open addressing this is difficult.

7.7 Hashing

7.7 Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

7.7 Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

7.7 Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f: U \rightarrow[0, \ldots, n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

7.7 Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f: U \rightarrow[0, \ldots, n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Universal hashing tries to define a set \mathcal{H} of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \mathcal{H}.

7.7 Hashing

Definition 25
A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called universal if for all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=h\left(u_{2}\right)\right] \leq \frac{1}{n},
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

7.7 Hashing

Definition 25
A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called universal if for all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=h\left(u_{2}\right)\right] \leq \frac{1}{n},
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

Note that this means that $\operatorname{Pr}\left[h\left(u_{1}\right)=h\left(u_{2}\right)\right]=\frac{1}{n}$.

7.7 Hashing

Definition 26

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called 2 -independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in\{0, \ldots, n-1\} \operatorname{Pr}[h(u)=t]=\frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$, and for any two hash-positions t_{1}, t_{2} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge h\left(u_{2}\right)=t_{2}\right] \leq \frac{1}{n^{2}} .
$$

Note that the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

7.7 Hashing

Definition 26

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called 2 -independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in\{0, \ldots, n-1\} \operatorname{Pr}[h(u)=t]=\frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$, and for any two hash-positions t_{1}, t_{2} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge h\left(u_{2}\right)=t_{2}\right] \leq \frac{1}{n^{2}} .
$$

Note that the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

This requirement clearly implies a universal hash-function.

7.7 Hashing

Definition 27
A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called k-independent if for any choice of $\ell \leq k$ distinct keys $u_{1}, \ldots, u_{\ell} \in U$, and for any set of ℓ not necessarily distinct hash-positions t_{1}, \ldots, t_{ℓ} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge \cdots \wedge h\left(u_{\ell}\right)=t_{\ell}\right] \leq \frac{1}{n^{\ell}}
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

7.7 Hashing

Definition 28
A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called (μ, k)-independent if for any choice of $\ell \leq k$ distinct keys $u_{1}, \ldots, u_{\ell} \in U$, and for any set of ℓ not necessarily distinct hash-positions t_{1}, \ldots, t_{ℓ} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge \cdots \wedge h\left(u_{\ell}\right)=t_{\ell}\right] \leq\left(\frac{\mu}{n}\right)^{\ell},
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

7.7 Hashing

7.7 Hashing

Let $U:=\{0, \ldots, p-1\}$ for a prime p. Let $\mathbb{Z}_{p}:=\{0, \ldots, p-1\}$, and let $\mathbb{Z}_{p}^{*}:=\{1, \ldots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_{p}.

7.7 Hashing

Let $U:=\{0, \ldots, p-1\}$ for a prime p. Let $\mathbb{Z}_{p}:=\{0, \ldots, p-1\}$, and let $\mathbb{Z}_{p}^{*}:=\{1, \ldots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_{p}.

Define

$$
h_{a, b}(x):=(a x+b \bmod p) \bmod n
$$

7.7 Hashing

Let $U:=\{0, \ldots, p-1\}$ for a prime p. Let $\mathbb{Z}_{p}:=\{0, \ldots, p-1\}$, and let $\mathbb{Z}_{p}^{*}:=\{1, \ldots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_{p}.

Define

$$
h_{a, b}(x):=(a x+b \bmod p) \bmod n
$$

Lemma 29
The class

$$
\mathcal{H}=\left\{h_{a, b} \mid a \in \mathbb{Z}_{p}^{*}, b \in \mathbb{Z}_{p}\right\}
$$

is a universal class of hash-functions from U to $\{0, \ldots, n-1\}$.

7.7 Hashing

7.7 Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

7.7 Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

- $a x+b \not \equiv a y+b(\bmod p)$

7.7 Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

- $a x+b \not \equiv a y+b(\bmod p)$

$$
\text { If } x \neq y \text { then }(x-y) \not \equiv 0(\bmod p) .
$$

7.7 Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

- $a x+b \not \equiv a y+b(\bmod p)$

If $x \neq y$ then $(x-y) \not \equiv 0(\bmod p)$.
Multiplying with $a \not \equiv 0(\bmod p)$ gives

$$
a(x-y) \not \equiv 0 \quad(\bmod p)
$$

7.7 Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

- $a x+b \not \equiv a y+b(\bmod p)$

If $x \neq y$ then $(x-y) \not \equiv 0(\bmod p)$.
Multiplying with $a \not \equiv 0(\bmod p)$ gives

$$
a(x-y) \not \equiv 0 \quad(\bmod p)
$$

where we use that \mathbb{Z}_{p} is a field (KÃČÂúrper) and, hence, has no zero divisors (nullteilerfrei).

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to different hash-values $t_{x}:=h_{a, b}(x)$ and $t_{y}:=h_{a, b}(y)$.
- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to different hash-values $t_{x}:=h_{a, b}(x)$ and $t_{y}:=h_{a, b}(y)$.

This holds because we can compute a and b when given t_{x} and t_{y} :

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to different hash-values $t_{x}:=h_{a, b}(x)$ and $t_{y}:=h_{a, b}(y)$.

This holds because we can compute a and b when given t_{x} and t_{y} :

$$
\begin{aligned}
t_{x} & \equiv a x+b \\
t_{y} & \equiv a y+b
\end{aligned}
$$

$(\bmod p)$
$(\bmod p)$

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to different hash-values $t_{x}:=h_{a, b}(x)$ and $t_{y}:=h_{a, b}(y)$.

This holds because we can compute a and b when given t_{x} and t_{y} :

$$
\begin{aligned}
t_{x} & \equiv a x+b \\
t_{y} & \equiv a y+b \\
t_{x}-t_{y} & \equiv a(x-y) \\
t_{y} & \equiv a y+b
\end{aligned}
$$

$$
(\bmod p)
$$

$$
(\bmod p)
$$

$$
(\bmod p)
$$

$$
(\bmod p)
$$

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to different hash-values $t_{x}:=h_{a, b}(x)$ and $t_{y}:=h_{a, b}(y)$.

This holds because we can compute a and b when given t_{x} and t_{y} :

$$
\begin{aligned}
t_{x} & \equiv a x+b & & (\bmod p) \\
t_{y} & \equiv a y+b & & (\bmod p) \\
t_{x}-t_{y} & \equiv a(x-y) & & (\bmod p) \\
t_{y} & \equiv a y+b & & (\bmod p) \\
a & \equiv\left(t_{x}-t_{y}\right)(x-y)^{-1} & & (\bmod p) \\
b & \equiv a y-t_{y} & & (\bmod p)
\end{aligned}
$$

7.7 Hashing

7.7 Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

7.7 Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Therefore, we can view the first step (before the $(\bmod n)$ operation) as choosing a pair $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$ uniformly at random.

7.7 Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Therefore, we can view the first step (before the $(\bmod n)$ operation) as choosing a pair $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$ uniformly at random.

What happens when we do the $(\bmod n)$ operation?

7.7 Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Therefore, we can view the first step (before the $(\bmod n)$ operation) as choosing a pair $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$ uniformly at random.

What happens when we do the $(\bmod n)$ operation?
Fix a value t_{x}. There are $p-1$ possible values for choosing t_{y}.

7.7 Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Therefore, we can view the first step (before the $(\bmod n)$ operation) as choosing a pair $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$ uniformly at random.

What happens when we do the $(\bmod n)$ operation?
Fix a value t_{x}. There are $p-1$ possible values for choosing t_{y}.
From the range $0, \ldots, p-1$ the values $t_{x}, t_{x}+n, t_{x}+2 n, \ldots$ map to t_{x} after the modulo-operation. These are at most $\lceil p / n\rceil$ values.

7.7 Hashing

7.7 Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1
$$

7.7 Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1 \leq \frac{p}{n}+\frac{n-1}{n}-1
$$

7.7 Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1 \leq \frac{p}{n}+\frac{n-1}{n}-1 \leq \frac{p-1}{n}
$$

7.7 Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1 \leq \frac{p}{n}+\frac{n-1}{n}-1 \leq \frac{p-1}{n}
$$

possibilities for choosing t_{y} such that the final hash-value creates a collision.

7.7 Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1 \leq \frac{p}{n}+\frac{n-1}{n}-1 \leq \frac{p-1}{n}
$$

possibilities for choosing t_{y} such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.

7.7 Hashing

7.7 Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$
\operatorname{Pr}_{t_{x} \neq t_{y} \in \mathbb{Z}_{p}^{2}}\left[\begin{array}{c}
t_{x} \bmod n=h_{1} \\
\wedge \\
t_{y} \bmod n=h_{2}
\end{array}\right]
$$

7.7 Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$
\frac{\left\lfloor\frac{p}{n}\right\rfloor^{2}}{p(p-1)} \leq \operatorname{Pr}_{t_{x} \neq t_{y} \in \mathbb{Z}_{p}^{2}}\left[\begin{array}{c}
t_{x} \bmod n=h_{1} \\
\hat{\wedge} \\
t_{y} \bmod n=h_{2}
\end{array}\right] \leq \frac{\left\lceil\frac{p}{n}\right\rceil^{2}}{p(p-1)}
$$

7.7 Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$
\frac{\left\lfloor\frac{p}{n}\right\rfloor^{2}}{p(p-1)} \leq \operatorname{Pr}_{t_{x} \neq t_{y} \in \mathbb{Z}_{p}^{2}}\left[\begin{array}{c}
t_{x} \bmod n=h_{1} \\
\hat{1} \\
t_{y} \bmod n=h_{2}
\end{array}\right] \leq \frac{\left\lceil\frac{p}{n}\right\rceil^{2}}{p(p-1)}
$$

Note that the middle is the probability that $h(x)=h_{1}$ and $h(y)=h_{2}$. The total number of choices for $\left(t_{x}, t_{y}\right)$ is $p(p-1)$. The number of choices for $t_{x}\left(t_{y}\right)$ such that $t_{x} \bmod n=h_{1}$ ($t_{y} \bmod n=h_{2}$) lies between $\left\lfloor\frac{p}{n}\right\rfloor$ and $\left\lceil\frac{p}{n}\right\rceil$.

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.

Perfect Hashing

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$
\mathrm{E}[\# \text { Collisions }]=\binom{m}{2} \cdot \frac{1}{n} .
$$

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$
\mathrm{E}[\# \text { Collisions }]=\binom{m}{2} \cdot \frac{1}{n} .
$$

If we choose $n=m^{2}$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$
\mathrm{E}[\# \text { Collisions }]=\binom{m}{2} \cdot \frac{1}{n}
$$

If we choose $n=m^{2}$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$
\mathrm{E}[\# \text { Collisions }]=\binom{m}{2} \cdot \frac{1}{n}
$$

If we choose $n=m^{2}$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.

Perfect Hashing

Perfect Hashing

We can find such a hash-function by a few trials.

Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of $n=m^{2}$ is very very high.

Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of $n=m^{2}$ is very very high.
We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of $n=m^{2}$ is very very high.
We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_{j} denote the number of items that are hashed to the j-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_{j}^{2}. The second function can be chosen such that all elements are mapped to different locations.

Perfect Hashing

Perfect Hashing

The total memory that is required by all hash-tables is $\sum_{j} m_{j}^{2}$.

$$
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right]
$$

Perfect Hashing

The total memory that is required by all hash-tables is $\sum_{j} m_{j}^{2}$.

$$
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right]=\mathrm{E}\left[2 \sum_{j}\binom{m_{j}}{2}+\sum_{j} m_{j}\right]
$$

Perfect Hashing

The total memory that is required by all hash-tables is $\sum_{j} m_{j}^{2}$.

$$
\begin{aligned}
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right] & =\mathrm{E}\left[2 \sum_{j}\binom{m_{j}}{2}+\sum_{j} m_{j}\right] \\
& =2 \mathrm{E}\left[\sum_{j}\binom{m_{j}}{2}\right]+\mathrm{E}\left[\sum_{j} m_{j}\right]
\end{aligned}
$$

Perfect Hashing

The total memory that is required by all hash-tables is $\sum_{j} m_{j}^{2}$.

$$
\begin{aligned}
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right] & =\mathrm{E}\left[2 \sum_{j}\binom{m_{j}}{2}+\sum_{j} m_{j}\right] \\
& =2 \mathrm{E}\left[\sum_{j}\binom{m_{j}}{2}\right]+\mathrm{E}\left[\sum_{j} m_{j}\right]
\end{aligned}
$$

The first expectation is simply the expected number of collisions, for the first level.

Perfect Hashing

The total memory that is required by all hash-tables is $\sum_{j} m_{j}^{2}$.

$$
\begin{aligned}
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right] & =\mathrm{E}\left[2 \sum_{j}\binom{m_{j}}{2}+\sum_{j} m_{j}\right] \\
& =2 \mathrm{E}\left[\sum_{j}\binom{m_{j}}{2}\right]+\mathrm{E}\left[\sum_{j} m_{j}\right]
\end{aligned}
$$

The first expectation is simply the expected number of collisions, for the first level.

$$
=2\binom{m}{2} \frac{1}{m}+m=2 m-1
$$

Perfect Hashing

We need only $\mathcal{O}(m)$ time to construct a hash-function h with $\sum_{j} m_{j}^{2}=\mathcal{O}(4 m)$.

Then we construct a hash-table h_{j} for every bucket. This takes expected time $\mathcal{O}\left(m_{j}\right)$ for every bucket.

We only need that the hash-function is universal!!!

Cuckoo Hashing

Cuckoo Hashing

Goal:
Try to generate a perfect hash-table (constant worst-case search time) in a dynamic scenario.

- Two hash-tables $T_{1}[0, \ldots, n-1]$ and $T_{2}[0, \ldots, n-1]$, with hash-functions h_{1}, and h_{2}.

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search time) in a dynamic scenario.

- Two hash-tables $T_{1}[0, \ldots, n-1]$ and $T_{2}[0, \ldots, n-1]$, with hash-functions h_{1}, and h_{2}.
- An object x is either stored at location $T_{1}\left[h_{1}(x)\right]$ or $T_{2}\left[h_{2}(x)\right]$.

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search time) in a dynamic scenario.

- Two hash-tables $T_{1}[0, \ldots, n-1]$ and $T_{2}[0, \ldots, n-1]$, with hash-functions h_{1}, and h_{2}.
- An object x is either stored at location $T_{1}\left[h_{1}(x)\right]$ or $T_{2}\left[h_{2}(x)\right]$.
- A search clearly takes constant time if the above constraint is met.

Cuckoo Hashing

Insert:

\emptyset
\emptyset
x_{7}
\emptyset
\emptyset
x_{4}
x_{1}
\emptyset
\emptyset
T_{1}

\emptyset
\emptyset
x_{9}
\emptyset
\emptyset
x_{6}
\emptyset
x_{3}
\emptyset
T_{2}

Cuckoo Hashing

Insert:

\emptyset
\emptyset
x_{9}
\emptyset
\emptyset
x_{6}
\emptyset
x_{3}
\emptyset
T_{2}

Cuckoo Hashing

Insert:

Cuckoo Hashing

Insert:

Cuckoo Hashing

Insert:

Cuckoo Hashing

```
Algorithm 16 Cuckoo-Insert \((x)\)
    1: if \(T_{1}\left[h_{1}(x)\right]=x \vee T_{2}\left[h_{2}(x)\right]=x\) then return
    2: steps \(\leftarrow 1\)
    3: while steps \(\leq\) maxsteps do
    4: \(\quad\) exchange \(x\) and \(T_{1}\left[h_{1}(x)\right]\)
    5: if \(x=\) null then return
    6: \(\quad\) exchange \(x\) and \(T_{2}\left[h_{2}(x)\right]\)
    7: if \(x=\) null then return
    8: rehash() // change table-size and rehash everything
    9: Cuckoo-Insert ( \(x\) )
```


Cuckoo Hashing

Cuckoo Hashing

What is the expected time for an insert-operation?

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that touches ℓ different keys (apart from x)?

Cuckoo Hashing

Insert:

Cuckoo Hashing

Insert:

Cuckoo Hashing

Insert:

Cuckoo Hashing

Insert:

Cuckoo Hashing

A cycle-structure is defined by

Cuckoo Hashing

A cycle-structure is defined by

- ℓ_{a} keys $a_{1}, a_{2}, \ldots a_{\ell_{a}}, \ell_{a} \geq 2$,

Cuckoo Hashing

A cycle-structure is defined by

- ℓ_{a} keys $a_{1}, a_{2}, \ldots a_{\ell_{a}}, \ell_{a} \geq 2$,
- An index $j_{a} \in\left\{1 \ldots, \ell_{a}-1\right\}$ that defines how much the last item $a_{\ell_{a}}$ "jumps back" in the sequence.

Cuckoo Hashing

A cycle-structure is defined by

- ℓ_{a} keys $a_{1}, a_{2}, \ldots a_{\ell_{a}}, \ell_{a} \geq 2$,
- An index $j_{a} \in\left\{1 \ldots, \ell_{a}-1\right\}$ that defines how much the last item $a_{\ell_{a}}$ "jumps back" in the sequence.
- ℓ_{b} keys $b_{1}, b_{2}, \ldots b_{\ell_{b}} . b \geq 0$.

Cuckoo Hashing

A cycle-structure is defined by

- ℓ_{a} keys $a_{1}, a_{2}, \ldots a_{\ell_{a}}, \ell_{a} \geq 2$,
- An index $j_{a} \in\left\{1 \ldots, \ell_{a}-1\right\}$ that defines how much the last item $a_{\ell_{a}}$ "jumps back" in the sequence.
- ℓ_{b} keys $b_{1}, b_{2}, \ldots b_{\ell_{b}} . b \geq 0$.
- An index $j_{b} \in\left\{1 \ldots, \ell_{a}+\ell_{b}\right\}$ that defines how much the last item $b_{\ell_{b}}$ "jumps back" in the sequence.

Cuckoo Hashing

A cycle-structure is defined by

- ℓ_{a} keys $a_{1}, a_{2}, \ldots a_{\ell_{a}}, \ell_{a} \geq 2$,
- An index $j_{a} \in\left\{1 \ldots, \ell_{a}-1\right\}$ that defines how much the last item $a_{\ell_{a}}$ "jumps back" in the sequence.
- ℓ_{b} keys $b_{1}, b_{2}, \ldots b_{\ell_{b}} . b \geq 0$.
- An index $j_{b} \in\left\{1 \ldots, \ell_{a}+\ell_{b}\right\}$ that defines how much the last item $b_{\ell_{b}}$ "jumps back" in the sequence.
- An assignment of positions for the keys in both tables. Formally we have positions $p_{1}, \ldots, p_{\ell_{a}}$, and $p_{1}^{\prime}, \ldots, p_{\ell_{b}}^{\prime}$.

Cuckoo Hashing

A cycle-structure is defined by

- ℓ_{a} keys $a_{1}, a_{2}, \ldots a_{\ell_{a}}, \ell_{a} \geq 2$,
- An index $j_{a} \in\left\{1 \ldots, \ell_{a}-1\right\}$ that defines how much the last item $a_{\ell_{a}}$ "jumps back" in the sequence.
- ℓ_{b} keys $b_{1}, b_{2}, \ldots b_{\ell_{b}} . b \geq 0$.
- An index $j_{b} \in\left\{1 \ldots, \ell_{a}+\ell_{b}\right\}$ that defines how much the last item $b_{\ell_{b}}$ "jumps back" in the sequence.
- An assignment of positions for the keys in both tables. Formally we have positions $p_{1}, \ldots, p_{\ell_{a}}$, and $p_{1}^{\prime}, \ldots, p_{\ell_{b}}^{\prime}$.
- The size of a cycle-structure is defined as $\ell_{a}+\ell_{b}$.

Cuckoo Hashing

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_{1}(x)=h_{1}\left(a_{1}\right)=p_{1}$

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_{1}(x)=h_{1}\left(a_{1}\right)=p_{1}$
- $h_{2}\left(a_{1}\right)=h_{2}\left(a_{2}\right)=p_{2}$

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_{1}(x)=h_{1}\left(a_{1}\right)=p_{1}$
- $h_{2}\left(a_{1}\right)=h_{2}\left(a_{2}\right)=p_{2}$
- $h_{1}\left(a_{2}\right)=h_{1}\left(a_{3}\right)=p_{3}$

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_{1}(x)=h_{1}\left(a_{1}\right)=p_{1}$
- $h_{2}\left(a_{1}\right)=h_{2}\left(a_{2}\right)=p_{2}$
- $h_{1}\left(a_{2}\right)=h_{1}\left(a_{3}\right)=p_{3}$
- ...

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_{1}(x)=h_{1}\left(a_{1}\right)=p_{1}$
- $h_{2}\left(a_{1}\right)=h_{2}\left(a_{2}\right)=p_{2}$
- $h_{1}\left(a_{2}\right)=h_{1}\left(a_{3}\right)=p_{3}$
- ...
- if ℓ_{a} is even then $h_{1}\left(a_{\ell}\right)=p_{s_{a}}$, otw. $h_{2}\left(a_{\ell}\right)=p_{s_{a}}$

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_{1}(x)=h_{1}\left(a_{1}\right)=p_{1}$
- $h_{2}\left(a_{1}\right)=h_{2}\left(a_{2}\right)=p_{2}$
- $h_{1}\left(a_{2}\right)=h_{1}\left(a_{3}\right)=p_{3}$
- ...
- if ℓ_{a} is even then $h_{1}\left(a_{\ell}\right)=p_{s_{a}}$, otw. $h_{2}\left(a_{\ell}\right)=p_{s_{a}}$
- $h_{2}(x)=h_{2}\left(b_{1}\right)=p_{1}^{\prime}$

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_{1}(x)=h_{1}\left(a_{1}\right)=p_{1}$
- $h_{2}\left(a_{1}\right)=h_{2}\left(a_{2}\right)=p_{2}$
- $h_{1}\left(a_{2}\right)=h_{1}\left(a_{3}\right)=p_{3}$
- ...
- if ℓ_{a} is even then $h_{1}\left(a_{\ell}\right)=p_{s_{a}}$, otw. $h_{2}\left(a_{\ell}\right)=p_{s_{a}}$
- $h_{2}(x)=h_{2}\left(b_{1}\right)=p_{1}^{\prime}$
- $h_{1}\left(b_{1}\right)=h_{1}\left(b_{2}\right)=p_{2}^{\prime}$

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_{1}(x)=h_{1}\left(a_{1}\right)=p_{1}$
- $h_{2}\left(a_{1}\right)=h_{2}\left(a_{2}\right)=p_{2}$
- $h_{1}\left(a_{2}\right)=h_{1}\left(a_{3}\right)=p_{3}$
- ...
- if ℓ_{a} is even then $h_{1}\left(a_{\ell}\right)=p_{s_{a}}$, otw. $h_{2}\left(a_{\ell}\right)=p_{s_{a}}$
- $h_{2}(x)=h_{2}\left(b_{1}\right)=p_{1}^{\prime}$
- $h_{1}\left(b_{1}\right)=h_{1}\left(b_{2}\right)=p_{2}^{\prime}$
- ...

Cuckoo Hashing

Observation If we end up in an infinite loop there must exist a cycle-structure that is active for x.

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.
Whether a cycle-structure is active for key x depends on the hash-functions.

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.
Whether a cycle-structure is active for key x depends on the hash-functions.

Lemma 30
A given cycle-structure of size s is active for key x with probability at most

$$
\left(\frac{\mu}{n}\right)^{2(s+1)}
$$

if we use $(\mu, s+1)$-independent hash-functions.

Cuckoo Hashing

Proof.
All positions are fixed by the cycle-structure. Therefore we ask for the probability of mapping $s+1$ keys (the a-keys, the b-keys and x) to pre-specified positions in T_{1}, and to pre-specified positions in T_{2}.

Cuckoo Hashing

Proof.
All positions are fixed by the cycle-structure. Therefore we ask for the probability of mapping $s+1$ keys (the a-keys, the b-keys and x) to pre-specified positions in T_{1}, and to pre-specified positions in T_{2}.

The probability is

$$
\left(\frac{\mu}{n}\right)^{s+1} \cdot\left(\frac{\mu}{n}\right)^{s+1}
$$

since h_{1} and h_{2} are chosen independently.

Cuckoo Hashing

The number of cycle-structures of size s is small:

Cuckoo Hashing

The number of cycle-structures of size \boldsymbol{s} is small:

- There are at most s ways to choose ℓ_{a}. This fixes ℓ_{b}.

Cuckoo Hashing

The number of cycle-structures of size \boldsymbol{s} is small:

- There are at most s ways to choose ℓ_{a}. This fixes ℓ_{b}.
- There are at most s^{2} ways to choose j_{a}, and j_{b}.

Cuckoo Hashing

The number of cycle-structures of size \boldsymbol{s} is small:

- There are at most s ways to choose ℓ_{a}. This fixes ℓ_{b}.
- There are at most s^{2} ways to choose j_{a}, and j_{b}.
- There are at most m^{s} possibilities to choose the keys $a_{1}, \ldots, a_{\ell_{a}}$ and $b_{1}, \ldots, b_{\ell_{b}}$.

Cuckoo Hashing

The number of cycle-structures of size \boldsymbol{s} is small:

- There are at most s ways to choose ℓ_{a}. This fixes ℓ_{b}.
- There are at most s^{2} ways to choose j_{a}, and j_{b}.
- There are at most m^{s} possibilities to choose the keys $a_{1}, \ldots, a_{\ell_{a}}$ and $b_{1}, \ldots, b_{\ell_{b}}$.
- There are at most n^{s} choices for choosing the positions $p_{1}, \ldots, p_{\ell_{a}}$ and $p_{1}^{\prime}, \ldots, p_{\ell_{a}}^{\prime}$.

Cuckoo Hashing

Cuckoo Hashing

Hence, there are at most $s^{3}(m n)^{2}$ cycle-structures of size s.

Cuckoo Hashing

Hence, there are at most $s^{3}(m n)^{2}$ cycle-structures of size s.
The probability that there is an active cycle-structure of size s is at most

$$
s^{3}(m n)^{s} \cdot\left(\frac{\mu}{n}\right)^{2(s+1)}
$$

Cuckoo Hashing

Hence, there are at most $s^{3}(m n)^{2}$ cycle-structures of size s.
The probability that there is an active cycle-structure of size s is at most

$$
s^{3}(m n)^{s} \cdot\left(\frac{\mu}{n}\right)^{2(s+1)}=\frac{s^{3}}{m n}(m n)^{s+1}\left(\frac{\mu^{2}}{n^{2}}\right)^{s+1}
$$

Cuckoo Hashing

Hence, there are at most $s^{3}(m n)^{2}$ cycle-structures of size s.
The probability that there is an active cycle-structure of size s is at most

$$
\begin{aligned}
s^{3}(m n)^{s} \cdot\left(\frac{\mu}{n}\right)^{2(s+1)} & =\frac{s^{3}}{m n}(m n)^{s+1}\left(\frac{\mu^{2}}{n^{2}}\right)^{s+1} \\
& =\frac{s^{3}}{m n}\left(\frac{\mu^{2} m}{n}\right)^{s+1}
\end{aligned}
$$

Cuckoo Hashing

Cuckoo Hashing

If we make sure that $n \geq(1+\delta) \mu^{2} m$ for a constant δ (i.e., the hash-table is not too full) we obtain
$\operatorname{Pr}[$ there exists an active cycle-structure]

Cuckoo Hashing

If we make sure that $n \geq(1+\delta) \mu^{2} m$ for a constant δ (i.e., the hash-table is not too full) we obtain
$\operatorname{Pr}[$ there exists an active cycle-structure]

$$
\leq \sum_{s=2}^{\infty} \operatorname{Pr}[\text { there exists an act. cycle-structure of size } s]
$$

Cuckoo Hashing

If we make sure that $n \geq(1+\delta) \mu^{2} m$ for a constant δ (i.e., the hash-table is not too full) we obtain
$\operatorname{Pr}[$ there exists an active cycle-structure]

$$
\begin{aligned}
& \leq \sum_{s=2}^{\infty} \operatorname{Pr}[\text { there exists an act. cycle-structure of size } s] \\
& \leq \sum_{s=2}^{\infty} \frac{s^{3}}{m n}\left(\frac{\mu^{2} m}{n}\right)^{s+1}
\end{aligned}
$$

Cuckoo Hashing

If we make sure that $n \geq(1+\delta) \mu^{2} m$ for a constant δ (i.e., the hash-table is not too full) we obtain
$\operatorname{Pr}[$ there exists an active cycle-structure]

$$
\begin{aligned}
& \leq \sum_{s=2}^{\infty} \operatorname{Pr}[\text { there exists an act. cycle-structure of size } s] \\
& \leq \sum_{s=2}^{\infty} \frac{s^{3}}{m n}\left(\frac{\mu^{2} m}{n}\right)^{s+1} \\
& \leq \frac{1}{m n} \sum_{s=0}^{\infty} s^{3}\left(\frac{1}{1+\delta}\right)^{s}
\end{aligned}
$$

Cuckoo Hashing

If we make sure that $n \geq(1+\delta) \mu^{2} m$ for a constant δ (i.e., the hash-table is not too full) we obtain
$\operatorname{Pr}[$ there exists an active cycle-structure]

$$
\begin{aligned}
& \leq \sum_{s=2}^{\infty} \operatorname{Pr}[\text { there exists an act. cycle-structure of size } s] \\
& \leq \sum_{s=2}^{\infty} \frac{s^{3}}{m n}\left(\frac{\mu^{2} m}{n}\right)^{s+1} \\
& \leq \frac{1}{m n} \sum_{s=0}^{\infty} s^{3}\left(\frac{1}{1+\delta}\right)^{s} \\
& \leq \frac{1}{m^{2}} \cdot \mathcal{O}(1)
\end{aligned}
$$

Now assume that the insert operation takes t steps and does not create an infinite loop.

Now assume that the insert operation takes t steps and does not create an infinite loop.

Consider the sequences $x, a_{1}, a_{2}, \ldots, a_{\ell_{a}}$ and $x, b_{1}, b_{2}, \ldots, b_{\ell_{b}}$ where the a_{i} 's and b_{i} 's are defined as before (but for the construction we only use keys examined during the while loop)

Now assume that the insert operation takes t steps and does not create an infinite loop.

Consider the sequences $x, a_{1}, a_{2}, \ldots, a_{\ell_{a}}$ and $x, b_{1}, b_{2}, \ldots, b_{\ell_{b}}$ where the a_{i} 's and b_{i} 's are defined as before (but for the construction we only use keys examined during the while loop)

If the insert operation takes t steps then

$$
t \leq 2 \ell_{a}+2 \ell_{b}+2
$$

as no key is examined more than twice.

Now assume that the insert operation takes t steps and does not create an infinite loop.

Consider the sequences $x, a_{1}, a_{2}, \ldots, a_{\ell_{a}}$ and $x, b_{1}, b_{2}, \ldots, b_{\ell_{b}}$ where the a_{i} 's and b_{i} 's are defined as before (but for the construction we only use keys examined during the while loop)

If the insert operation takes t steps then

$$
t \leq 2 \ell_{a}+2 \ell_{b}+2
$$

as no key is examined more than twice.
Hence, one of the sequences $x, a_{1}, a_{2}, \ldots, a_{\ell_{a}}$ and
$x, b_{1}, b_{2}, \ldots, b_{\ell_{b}}$ must contain at least $t / 4$ keys (either $\ell_{a}+1$ or $\ell_{b}+1$ must be larger than $t / 4$).

Define a sub-sequence of length ℓ starting with x, as a sequence x_{1}, \ldots, x_{ℓ} of keys with $x_{1}=x$, together with $\ell+1$ positions $p_{0}, p_{1}, \ldots, p_{\ell}$ from $\{0, \ldots, n-1\}$.

Define a sub-sequence of length ℓ starting with x, as a sequence x_{1}, \ldots, x_{ℓ} of keys with $x_{1}=x$, together with $\ell+1$ positions $p_{0}, p_{1}, \ldots, p_{\ell}$ from $\{0, \ldots, n-1\}$.

We say a sub-sequence is right-active for h_{1} and h_{2} if
$h_{1}(x)=h_{1}\left(x_{1}\right)=p_{0}, h_{2}\left(x_{1}\right)=h_{2}\left(x_{2}\right)=p_{1}$,
$h_{1}\left(x_{2}\right)=h_{1}\left(x_{3}\right)=p_{2}, h_{2}\left(x_{3}\right)=h_{2}\left(x_{4}\right)=p_{3}, \ldots$.

Define a sub-sequence of length ℓ starting with x, as a sequence x_{1}, \ldots, x_{ℓ} of keys with $x_{1}=x$, together with $\ell+1$ positions $p_{0}, p_{1}, \ldots, p_{\ell}$ from $\{0, \ldots, n-1\}$.

We say a sub-sequence is right-active for h_{1} and h_{2} if
$h_{1}(x)=h_{1}\left(x_{1}\right)=p_{0}, h_{2}\left(x_{1}\right)=h_{2}\left(x_{2}\right)=p_{1}$,
$h_{1}\left(x_{2}\right)=h_{1}\left(x_{3}\right)=p_{2}, h_{2}\left(x_{3}\right)=h_{2}\left(x_{4}\right)=p_{3}, \ldots$.
We say a sub-sequence is left-active for h_{1} and h_{2} if $h_{2}\left(x_{1}\right)=p_{0}$, $h_{1}\left(x_{1}\right)=h_{1}\left(x_{2}\right)=p_{1}, h_{2}\left(x_{2}\right)=h_{2}\left(x_{3}\right)=p_{2}$,
$h_{1}\left(x_{3}\right)=h_{1}\left(x_{4}\right)=p_{3}, \ldots$.

Define a sub-sequence of length ℓ starting with x, as a sequence x_{1}, \ldots, x_{ℓ} of keys with $x_{1}=x$, together with $\ell+1$ positions $p_{0}, p_{1}, \ldots, p_{\ell}$ from $\{0, \ldots, n-1\}$.

We say a sub-sequence is right-active for h_{1} and h_{2} if
$h_{1}(x)=h_{1}\left(x_{1}\right)=p_{0}, h_{2}\left(x_{1}\right)=h_{2}\left(x_{2}\right)=p_{1}$,
$h_{1}\left(x_{2}\right)=h_{1}\left(x_{3}\right)=p_{2}, h_{2}\left(x_{3}\right)=h_{2}\left(x_{4}\right)=p_{3}, \ldots$.
We say a sub-sequence is left-active for h_{1} and h_{2} if $h_{2}\left(x_{1}\right)=p_{0}$, $h_{1}\left(x_{1}\right)=h_{1}\left(x_{2}\right)=p_{1}, h_{2}\left(x_{2}\right)=h_{2}\left(x_{3}\right)=p_{2}$,
$h_{1}\left(x_{3}\right)=h_{1}\left(x_{4}\right)=p_{3}, \ldots$.
For an active sequence starting with x the key x is supposed to have a collision with the second element in the sequence. This collision could either be in the table T_{1} (left) or in the table T_{2} (right). Therefore the above definitions differentiate between left-active and right-active.

Cuckoo Hashing

Observation:

If the insert takes $t \geq 4 \ell$ steps there must either be a left-active or a right-active sub-sequence of length ℓ starting with x.

Cuckoo Hashing

The probability that a given sub-sequence is left-active (right-active) is at most

$$
\left(\frac{\mu}{n}\right)^{2 \ell}
$$

if we use (μ, ℓ)-independent hash-functions. This holds since there are ℓ keys whose hash-values (two values per key) have to map to pre-specified positions.

Cuckoo Hashing

The number of sequences is at most $m^{\ell-1} p^{\ell+1}$ as we can choose $\ell-1$ keys (apart from x) and we can choose $\ell+1$ positions p_{0}, \ldots, p_{ℓ}.

The probability that there exists a left-active or right-active sequence of length ℓ is at most
$\operatorname{Pr}[$ there exists active sequ. of length $\ell]$

$$
\begin{aligned}
& \leq 2 \cdot m^{\ell-1} \cdot n^{\ell+1} \cdot\left(\frac{\mu}{n}\right)^{2 \ell} \\
& \leq 2\left(\frac{1}{1+\delta}\right)^{\ell}
\end{aligned}
$$

Cuckoo Hashing

If the search does not run into an infinite loop the probability that it takes more than 4ℓ steps is at most

$$
2\left(\frac{1}{1+\delta}\right)^{\ell}
$$

We choose maxsteps $=4(1+2 \log m) / \log (1+\delta)$. Then the probability of terminating the while-loop because of reaching maxsteps is only $\mathcal{O}\left(\frac{1}{m^{2}}\right)\left(\mathcal{O}\left(1 / m^{2}\right)\right.$ because of reaching an infinite loop and $1 / m^{2}$ because the search takes maxsteps steps without running into a loop).

Cuckoo Hashing

The expected time for an insert under the condition that maxsteps is not reached is

$$
\begin{aligned}
& \sum_{\ell \geq 0} \operatorname{Pr}[\text { search takes at least } \ell \text { steps } \mid \text { iteration successful }] \\
& \qquad \leq \sum_{\ell \geq 0} 8\left(\frac{1}{1+\delta}\right)^{\ell}=\mathcal{O}(1)
\end{aligned}
$$

More generally, the above expression gives a bound on the cost in the successful iteration of an insert-operation (there is exactly one successful iteration).

An iteration that is not successful induces cost $\mathcal{O}(m)$ for doing a complete rehash.

Cuckoo Hashing

The expected number of unsuccessful operations is $\mathcal{O}\left(\frac{1}{\mathrm{~m}^{2}}\right)$. Hence, the expected cost in unsuccessful iterations is only $\mathcal{O}\left(\frac{1}{m}\right)$.

Hence, the total expected cost for an insert-operation is constant.

Cuckoo Hashing

What kind of hash-functions do we need?
Since maxsteps is $\Theta(\log m)$ it is sufficient to have $(\mu, \Theta(\log m))$-independent hash-functions.

Cuckoo Hashing

How do we make sure that $n \geq \mu^{2}(1+\delta) m$?

- Let $\alpha:=1 /\left(\mu^{2}(1+\delta)\right)$.
- Keep track of the number of elements in the table. Whenever $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\frac{\alpha}{4} n$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m=\frac{\alpha}{2} n$. In order for a table-expand to occur at least $\frac{\alpha}{2} n$ insertions are required. Similar, for a table-shrink at least $\frac{\alpha}{4}$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

Definition 31

Let $d \in \mathbb{N} ; q \geq n$ be a prime; and let $\vec{a} \in\{0, \ldots, q-1\}^{d+1}$. Define for $x \in\{0, \ldots, q\}$

$$
h_{\vec{a}}(x):=\left(\sum_{i=0}^{d} a_{i} x^{i} \bmod q\right) \bmod n
$$

Let $\mathcal{H}_{n}^{d}:=\left\{h_{\vec{a}} \mid \vec{a} \in\{0, \ldots, q\}^{d+1}\right\}$. The class \mathcal{H}_{n}^{d} is (2, $d+1$)-independent.

The polynomial is defined by $d+1$ distinct points.

For the coefficients $\bar{a} \in\{0, \ldots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$
f_{\bar{a}}(x)=\left(\sum_{i=0}^{d} a_{i} x^{i}\right) \bmod q
$$

For the coefficients $\bar{a} \in\{0, \ldots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$
f_{\bar{a}}(x)=\left(\sum_{i=0}^{d} a_{i} x^{i}\right) \bmod q
$$

The polynomial is defined by $d+1$ distinct points.

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Let $A^{\ell}=\left\{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}\left(x_{i}\right)=t_{i}\right.$ for all $\left.i \in\{1, \ldots, \ell\}\right\}$

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Let $A^{\ell}=\left\{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}\left(x_{i}\right)=t_{i}\right.$ for all $\left.i \in\{1, \ldots, \ell\}\right\}$
Then

$$
\begin{aligned}
h_{\bar{a}} \in A^{\ell} \Leftrightarrow & h_{\bar{a}}=f_{\bar{a}} \bmod n \text { and } \\
& f_{\bar{a}}\left(x_{i}\right) \in\left\{t_{i}+\alpha \cdot n \left\lvert\, \alpha \in\left\{0, \ldots,\left\lceil\frac{q}{n}\right\rceil-1\right\}\right.\right\}
\end{aligned}
$$

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Let $A^{\ell}=\left\{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}\left(x_{i}\right)=t_{i}\right.$ for all $\left.i \in\{1, \ldots, \ell\}\right\}$
Then

$$
\begin{aligned}
h_{\bar{a}} \in A^{\ell} \Leftrightarrow & h_{\bar{a}}=f_{\bar{a}} \bmod n \text { and } \\
& f_{\bar{a}}\left(x_{i}\right) \in\left\{t_{i}+\alpha \cdot n \left\lvert\, \alpha \in\left\{0, \ldots,\left\lceil\frac{q}{n}\right\rceil-1\right\}\right.\right\}
\end{aligned}
$$

Therefore I have

$$
\left|B_{1}\right| \cdot \ldots \cdot\left|B_{\ell}\right| \cdot q^{d-\ell+1} \leq\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}
$$

possibilities to choose \bar{a} such that $h_{\bar{a}} \in A_{\ell}$.

Therefore the probability of choosing $h_{\bar{a}}$ from A_{ℓ} is only

$$
\frac{\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq\left(\frac{2}{n}\right)^{\ell}
$$

