Effiziente Algorithmen und Datenstrukturen I

Aufgabe 1 (10 Punkte)

Prove the following statements:

1. $\forall c \in \mathbb{R}^{+}, c \cdot f(n) \in \Theta(f(n))$
2. $f(n)+g(n) \in \Omega(f(n))$
3. $f(n) \in O(g(n)) \Rightarrow f(n)+g(n) \in O(g(n))$
4. $f(n) \in o(g(n))$ and $g(n) \in O(h(n)) \Rightarrow h(n) \in \omega(f(n))$
5. $f(n) \in O(g(n))$ and $g(n) \in O(f(n)) \Leftrightarrow f(n) \in \Theta(g(n))$

Aufgabe 2 (10 Punkte)

For constants $c, \epsilon>0$ and $k>1$, arrange the following functions of n in non-decreasing asymptotic order so that $f_{i}(n)=O\left(f_{i+1}(n)\right)$ for two consecutive functions in your sequence. Also indicate whether $f_{i}(n)=\Theta\left(f_{i+1}(n)\right)$ holds or not.

$$
n^{k}, \sqrt{n}, 2^{n}, n^{1+\sin (n)}, \log (n!), n^{k+\epsilon}, n^{n}, n, n^{k}(\log n)^{c}, n!, n \log n, 3^{n}, n \log \log n, n \log \left(n^{2}\right)
$$

Aufgabe 3 (10 Punkte)

Solve the following recurrence relations:

1. $a_{n}=a_{n-1}+2^{n-1}$ with $a_{0}=2$.
2. $a_{n}=a_{n-1}+8 a_{n-2}-12 a_{n-3}$ with $a_{0}=-1, a_{1}=11$ and $a_{2}=-27$.

Aufgabe 4 (10 Punkte)

Given two $n \times n$ matrices A and B where n is a power of 2 , we know how to find $C=A \cdot B$ by performing n^{3} multiplications. Now let us consider the following approach. We partition A, B and C into equally sized block matrices as follows:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Consider the following matrices:

$$
\begin{aligned}
& M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& M_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
& M_{3}=A_{11}\left(B_{12}-B_{22}\right) \\
& M_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
& M_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
& M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
& M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
& C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
& C_{12}=M_{3}+M_{5} \\
& C_{21}=M_{2}+M_{4} \\
& C_{22}=M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

1. Convince yourself that the matrices $C_{i j}$ evaluated as above are indeed correct. Don't write anything to prove this.
2. Design an efficient algorithm for multiplying two $n \times n$ matrices based on these facts. Analyze its running time.
