Effiziente Algorithmen und Datenstrukturen I

Aufgabe 1 (10 Punkte)

Carry out the following operations sequentially on the $(2,4)$ tree shown below so that it remains a $(2,4)$ tree and show what the tree looks like after each operation(always carry out each operation on the result of the previous operation):

1. Insert(4)
2. Delete(3)
3. Delete(1)

Aufgabe 2 (10 Punkte)

Prove that there exists a sequence of n insert and delete operations on a (2,3)-tree s.t. the total number of split and merge operations performed is $\Omega(n \log n)$.

Aufgabe 3 (10 Punkte)

Show how to maintain a dynamic set Q of numbers that supports the operation MIN-GAP, which gives the magnitude of difference of the two closest numbers in Q. For example, if $Q=\{1,5,9,15,18,22\}$, then $\operatorname{MIN-GAP}(Q)$ returns $18-15=3$, since 15 and 18 are the two closest numbers in Q. Make the operations INSERT, DELETE, SEARCH, and MIN-GAP as efficient as possible, and analyze their running times.

