Effiziente Algorithmen und Datenstrukturen I

Aufgabe 1 (10 Punkte)

A path cover of a directed graph $G=(V, E)$ is a set P of vertex-disjoint paths such that every vertex in V is included in exactly one path in P. Paths may start and end anywhere, and they may be of any length, including 0 . A minimum path cover of G is a path cover containing the fewest possible paths.
a Give an efficient algorithm to find a minimum path cover of a directed acyclic graph $G=(V, E)$. (Hint: Assuming that $V=\{1,2, \ldots, n\}$, construct the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where

$$
\begin{aligned}
V^{\prime} & =\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \cup\left\{y_{0}, y_{1}, \ldots, y_{n}\right\}, \\
E^{\prime} & =\left\{\left(x_{0}, x_{i}\right): i \in V\right\} \cup\left\{\left(y_{i}, y_{0}\right): i \in V\right\} \cup\{(x i, y j):(i, j) \in E\}
\end{aligned}
$$

and run a maximum-flow algorithm.)
b Does your algorithm work for directed graphs that contain cycles? Explain.

Aufgabe 2 (10 Punkte)

Let $G=(V, E)$ be a flow network with source s, $\operatorname{sink} t$, and integer capacities. Suppose that we are given a maximum flow in G.
a Suppose that the capacity of a single edge $(u, v) \in E$ is increased by 1 . Give an $O(V+E)$ time algorithm to update the maximum flow.
b Suppose that the capacity of a single edge $(u, v) \in E$ is decreased by 1 . Give an $O(V+E)$ time algorithm to update the maximum flow.

Aufgabe 3 (10 Punkte)

We say that a bipartite graph $G=(V, E)$, where $V=L \cup R$, is d-regular if every vertex $v \in V$ has degree exactly d. Every d-regular bipartite graph has $|L|=|R|$. Prove that every d-regular bipartite graph has a matching of cardinality $|L|$ by arguing that a minimum cut of the corresponding flow network has capacity $|L|$.

Aufgabe 4 (10 Punkte)

In the lecture, you studied the problem of min-cost flow problem formulated as follows:

$$
\min \sum_{e \in E} c(e) \cdot f(e)
$$

$$
\begin{aligned}
\text { where } l(e) & \leq f(e) \leq u(e) \\
f(v) & =b(v)
\end{aligned}
$$

where $c(e)$ and $b(v)$ can be negative, $l(e)$ can be $-\infty$ and $u(e)$ can be ∞. Show that we can reduce this to a problem where for an edge $e=(u, v)$, at least one of $l(e)$ or $u(e)$ is finite. In the lecture this reduction was already shown when $c(e)=0$. Show the reduction when $c(e) \neq 0$.
(Hint: First show that it is sufficient to show this reduction for $b(u)=b(v)=0$)

Aufgabe 5 (5 Punkte)

(Note:Attempt this question iff your marks in previous assignments are below the required threshold of 40%)
Let f be a flow in a network, and let α be a real number. The scalar flow product, denoted $\alpha \cdot f$, is a function from $V \times V$ to R defined by

$$
(\alpha \cdot f)(u, v)=\alpha \cdot f(u, v)
$$

Prove that the flows in a network form a convex set. That is, show that if f_{1} and f_{2} are flows, then so is $\alpha f_{1}+(1-\alpha) f_{2}$ for $0 \leq \alpha \leq 1$.

