Complexity Theory

Due date: May 8, 2012 before class!

Problem 1 (10 Points)

Recall the definition of the Landau notation for $f, g: \mathbb{N} \rightarrow \mathbb{N}$:

$$
\begin{aligned}
f=\mathcal{O}(g) & : \Longleftrightarrow \quad \exists c>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: f(n) \leq c \cdot g(n), \\
f=\Omega(g) & : \Longleftrightarrow g=\mathcal{O}(f), \\
f=\Theta(g) & : \Longleftrightarrow f=\mathcal{O}(g) \wedge f=\Omega(g), \\
f=o(g) & : \Longleftrightarrow \quad \forall c>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: f(n) \leq c \cdot g(n), \\
f=\omega(g) & : \Longleftrightarrow g=o(f) .
\end{aligned}
$$

Remark: Depending on the author, you will see the notations $f=\mathcal{O}(g)$ or $f \in \mathcal{O}(g)$, respectively. Both notations are tolerated, just be consistent with yours!
(a) For strictly positive functions f, g, i.e. $f(n), g(n)>0$ for all $n \in \mathbb{N}$, show or disprove:
(i) $f=\Theta(g)$ if and only if there exist $c_{1}, c_{2}>0$ such that $c_{1} \leq \frac{f(n)}{g(n)} \leq c_{2}$ for almost all $n \in \mathbb{N}$. ("almost all" is equivalent to "except for finitely many").
(ii) $f=o(g)$ if and only if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
(b) Show that polynomial growth is dominated by exponential growth, i.e. for every $d>0, b>1$ it holds that $n^{d}=o\left(b^{n}\right)$.
(c) For each of the following pairs of functions f, g determine whether $f=o(g), g=o(f)$ or $f=\Theta(g)$.
(i) $f(n)=n^{2}, \quad g(n)=2 n^{2}+100 \sqrt{n}$,
(ii) $f(n)=1000 n, \quad g(n)=n \log n$,
(iii) $f(n)=2^{2^{n+1}}, \quad g(n)=2^{2^{n}}$,
(iv) $f(n)=n^{n}, \quad g(n)=2^{2^{n}}$.

Problem 2 (10 Points)

Prove that the following languages/decision problems on graphs are in \mathcal{P} : (You may pick either the adjacency matrix or adjacency list representation for graphs, it will not make a difference - can you see why?)
(a) Connected - the set of all connected graphs. That is, $G \in$ Connected if every pair of vertices u, v in G are connected by a path.
(b) Trianglefree - the set of all graphs that do not contain a triangle (i.e., a triplet u, v, w of connected distinct vertices).
(c) Bipartite - the set of all bipartite graphs. That is, $G \in$ Bipartite if the vertices of G can be partitioned to two sets A, B such that all edges in G are from a vertex in A to a vertex in B (there is no edge between two members of A or two members of $B)$.

Problem 3 (10 Points)

(a) We are given a 1 -tape Turing machine with alphabet $\Gamma=\left\{0,1,,_{-}\right\}$, a set of states $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$, and the transition function δ, defined by

$q \in Q$	$s \in \Gamma$	$\delta(q, s)$		
q_{1}	-	q_{2}	0	R
q_{2}	-	q_{3}	-	R
q_{3}	-	q_{4}	1	R
q_{4}	-	q_{1}	-	R

On every other possible input for δ, the machine does nothing in this step.
The TM is started with an empty tape (i.e., only _ symbols on it). What does this TM do?
(b) Give an example of a 1-tape Turing machine for identifying palindromes over $\{0,1\}$. (A palindrom is a word that can be read the same way in either direction, i.e. Palindromes $\left.=\left\{x \in\{0,1\}^{*}: x=x^{R}\right\}.\right)$
(c) A Turing machine is called oblivious if the position of its heads at the i-th step of its computation on input x only depend on i and $|x|$, not on the input x itself.

Let L be a language that is decided by a Turing machine M in time $t(n)$. Show that there exists an oblivious Turing machine M^{\prime} that decides L in time $\mathcal{O}(t(n) \log t(n))$.

Problem 4 (10 Points)

Consider a variant of the Knapsack problem: Given a set of natural numbers $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and a natural number b, is there a subset $A^{\prime} \subseteq A$ such that $\sum_{a \in A^{\prime}} a=b$?

Show that in unary representation this problem can be solved in polynomial time. (Unary representation uses only one digit, 1 . The representation of a natural number N is therefore 1 repeated N times.)

