Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Complexity Theory

Due date: July 17, 2012 before class!

Problem 1 (10 Points)

Show that *perfect soundness* collapses the class IP to \mathcal{NP} , where perfect soundness means soundness with error probability 0.

Problem 2 (10 Points)

Show that \mathcal{NP} and **BPP** are contained in **MA** and in **AM**.

Problem 3 (10 Points)

Give an interactive protocol to show that $GI \in IP$.

Problem 4 (10 Points)

Let p be a prime number. An integer a is a quadratic residue modulo p if there is some integer b s.t. $a \equiv b^2 \mod p$.

- (i) Show that $Q_{\mathbf{R}} := \{(a, p) \in \mathbb{Z}^2 : a \text{ is a quadratic residue modulo } p\}$ is in \mathcal{NP} .
- (ii) Set $QNR := \{(a, p) \in \mathbb{Z}^2 : a \text{ is not a quadratic residue modulo } p\}$. Complete the following sketch of an interactive proof protocol for QNR and show its completeness and soundness:
 - 1.) Input: integer a and prime p.
 - 2.) V chooses r ∈ {0,..., p − 1} and b ∈ {0,1} uniformly at random, keeping both secret.
 If b = 0, V sends r² mod p to P.
 If b = 1, V sends ar² mod p to P.