Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Complexity Theory

Due date: May 15, 2012 before class!

Problem 1 (10 Points)

- (i) One can easily show that the polynomial-time many-to-one reduction \preceq^p_m is reflexive (i.e. $A \preceq^p_m A$ for all languages A) and transitive (i.e., if $A \preceq^p_m B$ and $B \preceq^p_m C$, then $A \preceq^p_m C$). But is it also commutative (i.e., if $A \preceq^p_m B$, then $B \preceq^p_m A$)?
- (ii) Show or disprove: \mathcal{NP} is closed under union or intersection, respectively. (Meaning that if $L_1, L_2 \in \mathcal{NP}$, then $L_1 \cup L_2 \in \mathcal{NP}$ or $L_1 \cap L_2 \in \mathcal{NP}$, respectively.)

Problem 2 (10 Points)

(Berman 1978) A unary language contains strings of the form 1^m , i.e. strings of m ones for some m > 0. Show that if a \mathcal{NP} -complete unary language exists, then $\mathcal{P} = \mathcal{NP}$.

Problem 3 (10 Points)

Prove that $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

Problem 4 (10 Points)

Let TAUTOLOGY = { $\varphi : \varphi$ is a boolean formula that is satisfied by every assignment}. Show that $\mathcal{NP} = \text{co-}\mathcal{NP}$ if and only if 3SAT and TAUTOLOGY are polynomial-time reducible to one another.