Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Complexity Theory

Due date: May 22, 2012 before class!

Problem 1 (10 Points)

Consider the problem of *map coloring*: Can you color a map with k different colors, such that no pair of adjacent countries has the same color?

- (i) Describe the map coloring problem as a proper graph problem and redefine the language k-COLORABILITY = {Maps that are colorable with at most k colors}.
- (ii) Show that 2-COLORABILITY is in \mathcal{P} .
- (iii) Show that 3-COLORABILITY is \mathcal{NP} -complete. *Hint*: Use a reduction to INDSET.

Problem 2 (10 Points)

Recall the following definition: A language A is *polynomial-time Cook-reducible* to a language B if there is a polynomial-time TM M that, given an oracle deciding B, can decide A.

Show that 3SAT is Cook-reducible to TAUTOLOGY.

Problem 3 (10 Points)

In the EXACTLY ONE 3SAT problem, we are given a 3CNF formula φ and need to decide if there exists a satisfying assignment u for φ such that every clause of φ has exactly one TRUE literal. Prove that EXACTLY ONE 3SAT is \mathcal{NP} -complete.

Problem 4 (10 Points)

Suppose $L_1, L_2 \in \mathcal{NP} \cap \text{co-}\mathcal{NP}$. Then show that $L_1 \oplus L_2$ is in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$, where $L_1 \oplus L_2 = \{x : x \text{ is in exactly one of } L_1, L_2\}$, i.e. an XOR.