Complexity Theory

Due date: May 22, 2012 before class!

Problem 1 (10 Points)

Consider the problem of map coloring: Can you color a map with k different colors, such that no pair of adjacent countries has the same color?
(i) Describe the map coloring problem as a proper graph problem and redefine the language k-Colorability $=\{$ Maps that are colorable with at most k colors $\}$.
(ii) Show that 2-Colorability is in \mathcal{P}.
(iii) Show that 3 -Colorability is $\mathcal{N} \mathcal{P}$-complete.

Hint: Use a reduction to Indset.

Problem 2 (10 Points)

Recall the following definition: A language A is polynomial-time Cook-reducible to a language B if there is a polynomial-time TM M that, given an oracle deciding B, can decide A.
Show that 3Sat is Cook-reducible to Tautology.

Problem 3 (10 Points)

In the Exactly One 3Sat problem, we are given a 3CNF formula φ and need to decide if there exists a satisfying assignment u for φ such that every clause of φ has exactly one true literal. Prove that Exactly One 3Sat is $\mathcal{N} \mathcal{P}$-complete.

Problem 4 (10 Points)

Suppose $L_{1}, L_{2} \in \mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$. Then show that $L_{1} \oplus L_{2}$ is in $\mathcal{N} \mathcal{P} \cap$ co- $\mathcal{N} \mathcal{P}$, where $L_{1} \oplus L_{2}=\left\{x: x\right.$ is in exactly one of $\left.L_{1}, L_{2}\right\}$, i.e. an XOR.

