Complexity Theory

Due date: June 19, 2012 before class!

Problem 1 (10 Points)

Prove the following:

- (i) If for any $i \ge 1$, it holds that $\Sigma_i^p = \prod_i^p$, then $\mathbf{PH} = \Sigma_i^p$.
- (ii) If SAT $\leq_m^p \overline{\text{SAT}}$, then $\mathbf{PH} = \mathcal{NP}$.
- (iii) If there exists a **PH**-complete language, then the polynomial hierarchy collapses.

Problem 2 (10 Points)

- (i) Argue that at least one of the assumptions $\mathbf{L} \neq \mathcal{P}$ and $\mathcal{P} \neq \mathbf{PSPACE}$ is true.
- (ii) Use padding to show that if $\mathcal{P} = \mathbf{L}$, then $\mathbf{EXP} = \mathbf{PSPACE}$.

Problem 3 (10 Points)

Recall the definition of alternating Turing machines (ATM) with control states partitioned into sets Q_{\forall} and Q_{\exists} , and the corresponding class **AP**.

- (i) Show that a language $L \in \mathbf{AP}$ decided by an *existential* ATM (i.e. $Q_{\forall} = \emptyset$) is in \mathcal{NP} .
- (ii) Show that a language $L \in \mathbf{AP}$ decided by an *universal* ATM (i.e. $Q_{\exists} = \emptyset$) is in co- \mathcal{NP} .
- (iii) Show that $\mathbf{AP} = \operatorname{co-}\mathbf{AP}$.
- (iv) Show that **PSPACE** is contained in **AP** by showing that $TQBF \in AP$.

Problem 4 (10 Points)

Suppose $t \ge 1, s > 0, t > s$. Then, $\mathbf{TISP}(n^t, n^s) \subseteq \Sigma_2 \mathbf{TIME}(n^r)$ for any $r > \max\left(\frac{s+t}{2}, 1\right)$. *Hint:* This is a generalization of a statement we used for proving SAT $\notin \mathbf{TISP}(n^{1.1}, n^{0.1})$. The proof is similar to the one presented in the lecture.