Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Complexity Theory

Due date: June 26, 2012 before class!

Problem 1 (10 Points)

In the SUCCINCT SET COVER problem we are given a set $S = \{\varphi_1, \ldots, \varphi_m\}$ of 3DNF formulae on n variables, and an integer k. We need to decide if there exists a subset $S' \subseteq \{1, \ldots, m\}$ of size at most k such that $\bigvee_{i \in S'} \varphi_i$ is a tautology.

- (i) Show that SUCCINCT SET COVER $\in \Sigma_2^p$ by stating it as a Σ_2^p language.
- (ii) Since we know that $\Sigma_2^p = \mathcal{NP}^{\mathcal{NP}}$, give a formulation for SUCCINCT SET COVER that uses an \mathcal{NP} oracle.

Problem 2 (10 Points)

Prove that the following language is **PSPACE**-complete:

IN-PLACE ACCEPTANCE: Given a Turing machine M and an input x, does M accept x without ever leaving the first |x| + 1 symbols on its string?

Problem 3 (10 Points)

Define the class $\mathbf{E} = \bigcup_{c} \mathbf{DTIME}(2^{cn}).$

- (i) Is E closed under polynomial-time reductions?
- (ii) Show that $\mathcal{P}^{\mathbf{E}} = \mathbf{E}\mathbf{X}\mathbf{P}$.

Problem 4 (10 Points)

Prove $\mathbf{AL} = \mathcal{P}$.