Complexity Theory

Due date: July 3, 2012 before class!

Problem 1 (10 Points)

Show that every function $F:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed by a boolean circuit of size $1000 \cdot 2^{n} / n$.

Problem 2 (10 Points)

Describe a decidable language in $\mathbf{P}_{\text {/poly }}$ that is not in \mathcal{P}.

Problem 3 (10 Points)

Prove the Non-uniform Hierachy Theorem:
For functions $T, T^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ with $n<T(n)<T^{\prime}(n)<\frac{2^{n}}{100 n}$ and $T \log T=o\left(T^{\prime}\right)$, it follows that $\operatorname{SIZE}(T(n)) \subsetneq \operatorname{SIZE}\left(T^{\prime}(n)\right)$.
Hint: The proof idea for a linear and a quadratic function is given in the textbook.

Problem 4 (10 Points)

Show that $\mathbf{N C}^{1} \subseteq \mathbf{L}$. Conclude that PSPACE $\neq \mathbf{N C}^{1}$.

