We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. *exactly* counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

Formal Definition

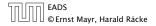
Let f denote functions from $\mathbb N$ to $\mathbb R^+.$

- ► $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 \colon [g(n) \ge c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- ► $o(f) = \{g \mid \forall c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)
- ► $\omega(f) = \{g \mid \forall c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \ge c \cdot f(n)]\}$ (set of functions that asymptotically grow faster than f)

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N} to \mathbb{R}^+ .

•
$$g \in \mathcal{O}(f)$$
: $0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$
• $g \in \Omega(f)$: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$
• $g \in \Theta(f)$: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$
• $g \in o(f)$: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$
• $g \in \omega(f)$: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$

- Note that for the version of the Landau notation defined here, we assume that *f* and *g* are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.



Abuse of notation

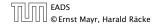
- 1. People write f = O(g), when they mean $f \in O(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto f(n)$, and $g : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto g(n)$.
- **3.** People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto z(n)$, $z \in o(g)$ such that h(n) = f(n) + z(n).

2. In this context $f(n)$ does not mean the	3. This is particularly useful if you do not
function f evaluated at n , but instead	want to ignore constant factors. For ex-
it is a shorthand for the function itself	
(leaving out domain and codomain and	be determined using $\frac{3}{2}n + o(n)$ compar-
only giving the rule of correspondence	isons.
of the function).	

EADS © Ernst Mayr, Harald Räcke

Abuse of notation

4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

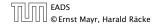


How do we interpret an expression like:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.



How do we interpret an expression like:

 $2n^2 + \mathcal{O}(n) = \Theta(n^2)$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta(n^2)$ that makes the expression true.

How do we interpret an expression like:

$$\sum_{i=1}^n \Theta(i) = \Theta(n^2)$$

Careful!

"It is understood" that every occurence of an \mathcal{O} -symbol (or $\Theta, \Omega, o, \omega$) on the left represents one anonymous function.

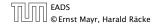
Hence, the left side is not equal to

$$\Theta(1) + \Theta(2) + \dots + \Theta(n-1) + \Theta(n)$$

$$\Theta(1) + \Theta(2) + \dots + \Theta(n-1) + \Theta(n) \text{ does}$$

$$\Theta(1) + \Theta(2) + \dots + \Theta(n-1) + \Theta(n) \text{ does}$$

$$\Theta(1) + \Theta(2) + \dots + \Theta(n-1) + \Theta(n) + \Theta(n)$$



5 Asymptotic Notation

The $\Theta(i)$ -symbol on the left represents one anonymous function $f : \mathbb{N} \to \mathbb{R}^+$, and then $\sum_i f(i)$ is computed.

We can view an expression containing asymptotic notation as generating a set:

 $n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n)$

represents

$$\left\{ f : \mathbb{N} \to \mathbb{R}^+ \mid f(n) = n^2 \cdot g(n) + h(n) \\ \text{with } g(n) \in \mathcal{O}(n) \text{ and } h(n) \in \mathcal{O}(\log n) \right\}$$

Recall that according to the previous slide e.g. the expressions $\sum_{i=1}^{n} O(i)$ and $\sum_{i=1}^{n/2} O(i) + \sum_{i=n/2+1}^{n} O(i)$ generate different sets.

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) = \Theta(n^2)$$

represents

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) \subseteq \Theta(n^2)$$

Note that the equation does not hold.

Lemma 1

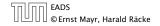
Let f, g be functions with the property $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\blacktriangleright \ \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

The expressions also hold for Ω . Note that this means that $f(n) + g(n) \in \Theta(\max\{f(n), g(n)\})$.

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have log_a n = Θ(log_b n). Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- ► In general $\log n = \log_2 n$, i.e., we use 2 as the default base for the logarithm.



In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
 - Algorithm A. Running time $f(n) = 1000 \log n = O(\log n)$.
 - Algorithm B. Running time $g(n) = \log^2 n$.

Clearly f = o(g). However, as long as $\log n \le 1000$ Algorithm B will be more efficient.