17 Bipartite Matching via Flows

Which flow algorithm to use?

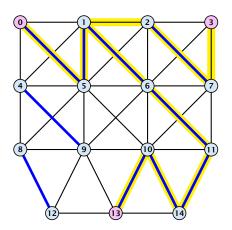
- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- ▶ Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

EADS © Ernst Mayr, Harald Räcke 17 Bipartite Matching via Flows

548

550

Augmenting Paths in Action



18 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- ► An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

EADS © Ernst Mayr, Harald Räcke

18 Augmenting Paths for Matchings

549

18 Augmenting Paths for Matchings

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

18 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in Mthen there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmentling path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

© Ernst Mayr, Harald Räcke

18 Augmenting Paths for Matchings

552

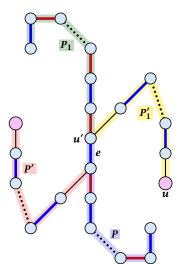
554

Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.

18 Augmenting Paths for Matchings

- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- ightharpoonup u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .
- ▶ $P_1 \circ P_1'$ is augmenting path in M (§).



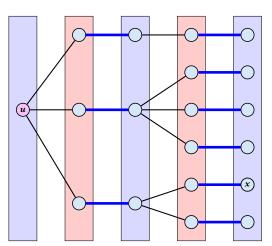
EADS © Ernst Mayr, Harald Räcke

18 Augmenting Paths for Matchings

553

How to find an augmenting path?

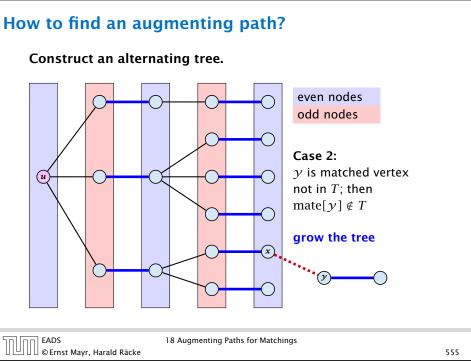
Construct an alternating tree.

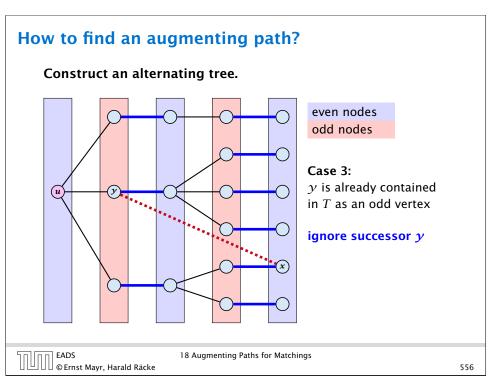


even nodes odd nodes

Case 1: ν is free vertex not contained in T

you found alternating path

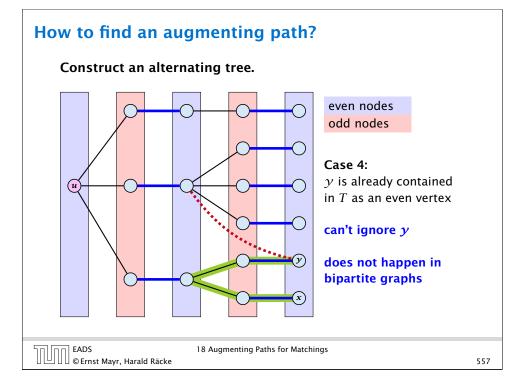




Algorithm 50 BiMatch(*G*, *match*) 1: **for** $x \in V$ **do** $mate[x] \leftarrow 0$; 2: $r \leftarrow 0$; free $\leftarrow n$; 3: while $free \ge 1$ and r < n do $r \leftarrow r + 1$ if mate[r] = 0 then 5: **for** i = 1 **to** m **do** $parent[i'] \leftarrow 0$ 6: 7: $O \leftarrow \emptyset$; O. append(r); aug \leftarrow false; while aug = false and $Q \neq \emptyset$ do $x \leftarrow O.$ dequeue(); 9: 10: for $y \in A_x$ do 11: if $mate[\gamma] = 0$ then 12: augm(mate, parent, y);13: *aug* ← true; 14: $free \leftarrow free - 1$: 15: else if parent[y] = 0 then 16: $parent[y] \leftarrow x;$ 17: 18: Q. enqueue($mate[\gamma]$);

graph $G = (S \cup S', E)$ $S = \{1, ..., n\}$ $S' = \{1', ..., n'\}$ start with an empty matching

free: number of unmatched nodes in S r: root of current tree
as long as there are unmatched nodes and we did not yet try to grow from all nodes we continue



19 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph $G = L \cup R$, E.
- ▶ an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- ▶ assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$

EADS © Ernst Mayr, Harald Räcke 19 Weighted Bipartite Matching

559