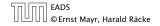
Definitions.

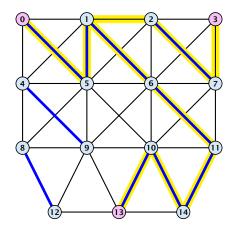
- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.



Augmenting Paths in Action

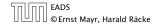


Proof.

- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching $M' = M \oplus P$ with larger cardinality.
- $\leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set M' \oplus M (i.e., only edges that are in either M or M' but not in both).$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.



Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

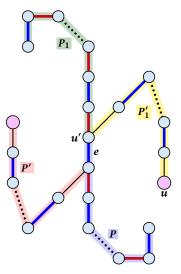
Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

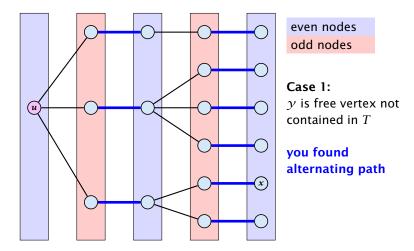
The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

Proof

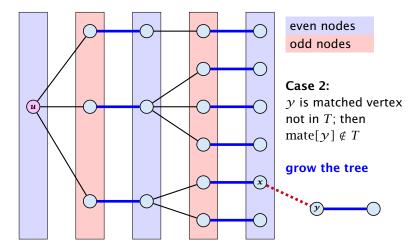
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (𝔅).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P'_1$ is augmenting path in M (ℓ).



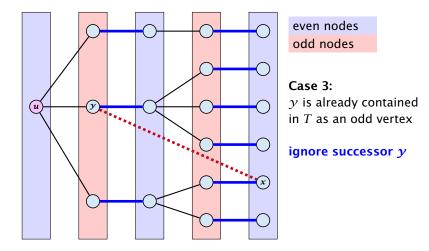
Construct an alternating tree.



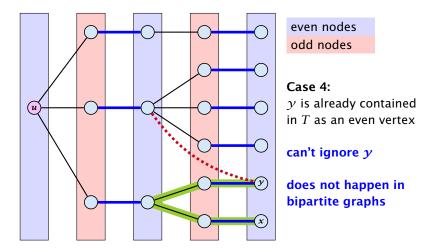
Construct an alternating tree.



Construct an alternating tree.



Construct an alternating tree.



Algorithm 50 BiMatch(G, match)	
1:	for $x \in V$ do <i>mate</i> [x] $\leftarrow 0$;
2:	$r \leftarrow 0$; free $\leftarrow n$;
3:	while $free \ge 1$ and $r < n$ do
4:	$r \leftarrow r + 1$
5:	if $mate[r] = 0$ then
6:	for $i = 1$ to m do $parent[i'] \leftarrow 0$
7:	$Q \leftarrow \emptyset; Q. \operatorname{append}(r); aug \leftarrow \operatorname{false};$
8:	while $aug = false$ and $Q \neq \emptyset$ do
9:	$x \leftarrow Q.$ dequeue();
10:	for $y \in A_x$ do
11:	if $mate[y] = 0$ then
12:	augm(mate, parent, y);
13:	<i>aug</i> ← true;
14:	$free \leftarrow free - 1;$
15:	else
16:	if $parent[y] = 0$ then
17:	$parent[y] \leftarrow x;$
18:	Q.enqueue(<i>mate</i> [y]);

graph
$$G = (S \cup S', E)$$

 $S = \{1, ..., n\}$
 $S' = \{1', ..., n'\}$

start with an empty matching

free: number of unmatched nodes in *S*

 $\boldsymbol{\gamma}$: root of current tree

as long as there are unmatched nodes and we did not yet try to grow from all nodes we continue