Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w.r.t.M.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

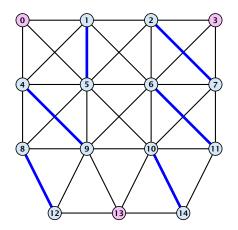
A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

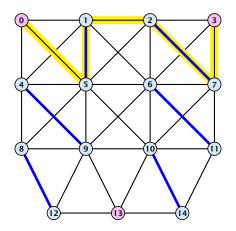
Definitions.

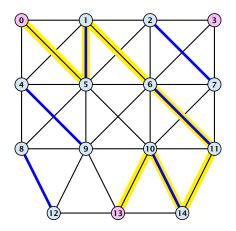
- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

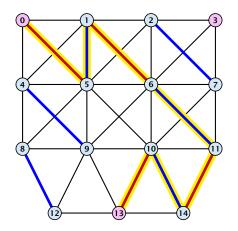
Theorem 1

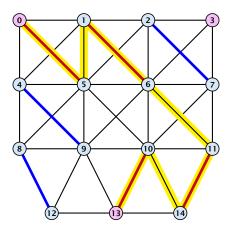
A matching M is a maximum matching if and only if there is no augmenting path w.r.t.M.

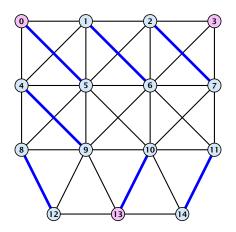












Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Proof.

- ⇒ If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Proof.

- ⇒ If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

Algorithmic idea:

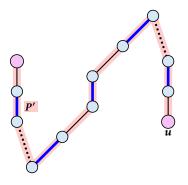
As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

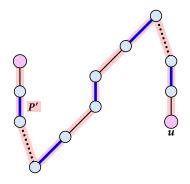
Let G be a graph, M a matching in G, and let u be a free vertex $w.r.t.\ M$. Further let P denote an augmenting path $w.r.t.\ M$ and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

Proof

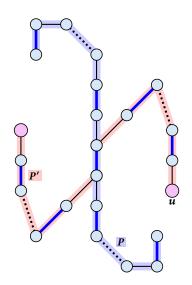
Assume there is an augmenting path P' w.r.t. M' starting at u.



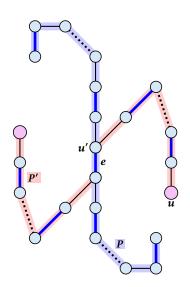
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).



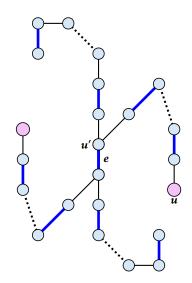
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).



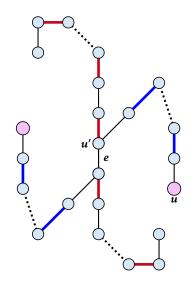
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.



- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.

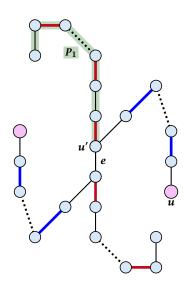


- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.



Proof

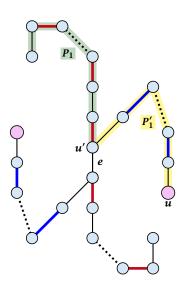
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .



FADS

Proof

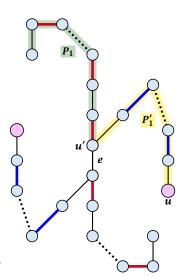
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .



FADS

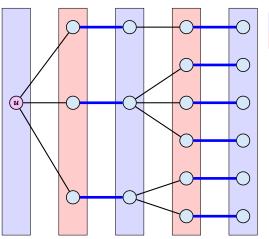
Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .
- ▶ $P_1 \circ P_1'$ is augmenting path in M (§).



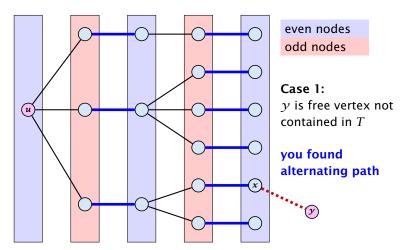
FADS

Construct an alternating tree.

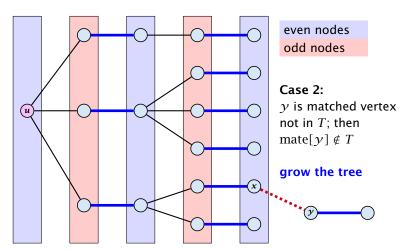


even nodes odd nodes

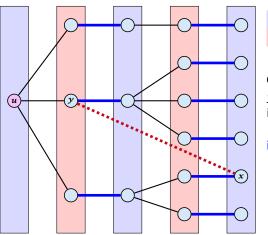
Construct an alternating tree.



Construct an alternating tree.



Construct an alternating tree.

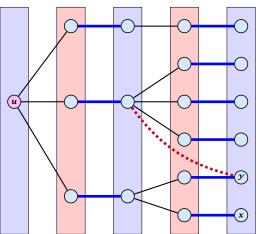


even nodes odd nodes

Case 3: *y* is already contained in *T* as an odd vertex

ignore successor y

Construct an alternating tree.



even nodes odd nodes

Case 4:

 ${\cal Y}$ is already contained in ${\cal T}$ as an even vertex

can't ignore y

does not happen in bipartite graphs


```
Algorithm 50 BiMatch(G, match)

1: for x \in V do mate[x] \leftarrow 0;

2: r \leftarrow 0; free \leftarrow n;

3: while free \geq 1 and r < n do

4: r \leftarrow r + 1

5: if mate[r] = 0 then

6: for i = 1 to m do parent[i'] \leftarrow 0

7: Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
```

8: 9:

10:

11:

12:

13:

14.

15:

16:

17:

18:

while aug = false and $Q \neq \emptyset$ do

if mate[y] = 0 then

aug ← true;

 $free \leftarrow free - 1$;

augm(mate, parent, y);

if parent[v] = 0 then

 $parent[y] \leftarrow x;$ Q. enqueue(mate[y]);

 $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

else

graph $G = (S \cup S', E)$ $S = \{1, ..., n\}$ $S' = \{1', ..., n'\}$

```
Algorithm 50 BiMatch(G, match)
```

- 1: **for** $x \in V$ **do** $mate[x] \leftarrow 0$; 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: **for** i = 1 **to** m **do** $parent[i'] \leftarrow 0$
- 7:
- 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- augm(mate, parent, y);
- 12: 13: *aug* ← true;

else

14.

15:

16:

17:

18:

- $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; while aug = false and $Q \neq \emptyset$ do
- - $free \leftarrow free 1$:
 - if parent[y] = 0 then $parent[y] \leftarrow x$; Q. enqueue(mate[y]);

start with an

empty matching

```
Algorithm 50 BiMatch(G, match)
```

- 1: **for** $x \in V$ **do** $mate[x] \leftarrow 0$; 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then** 6:
- for i = 1 to m do $parent[i'] \leftarrow 0$ 7:
- $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true;
- 14. $free \leftarrow free - 1$; else
- 15:
- 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

free: number of unmatched nodes in S r: root of current tree

Algorithm 50 BiMatch(G, match)

1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;

6:

7:

8: 9:

10:

11:

12:

13:

14.

3: while $free \ge 1$ and r < n do

4: $r \leftarrow r + 1$

5: **if** mate[r] = 0 **then**

for i = 1 to m do parent[i'] $\leftarrow 0$

 $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;

while aug = false and $Q \neq \emptyset$ do

 $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

if mate[y] = 0 then

augm(mate, parent, y); *aug* ← true;

 $free \leftarrow free - 1$;

15: else 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

as long as there are unmatched nodes and we did not yet try to grow from all nodes we continue

```
Algorithm 50 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
   if mate[r] = 0 then
 5:
 6:
           for i = 1 to m do parent[i'] \leftarrow 0
 7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
```

8: 9:

10:

11.

12:

13:

14.

15:

16:

17:

18:

while aug = false and $Q \neq \emptyset$ do

aug ← true;

 $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

else

 γ is the new node that we grow from.

```
if mate[y] = 0 then
   augm(mate, parent, y);
   free \leftarrow free - 1:
   if parent[y] = 0 then
      parent[y] \leftarrow x;
```

Q. enqueue(mate[y]);

```
Algorithm 50 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
    \gamma \leftarrow \gamma + 1
 4:
 5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
 7:
           while aug = false and Q \neq \emptyset do
```

 $x \leftarrow O.$ dequeue():

aug ← true;

for $\gamma \in A_{\chi}$ do

else

8: 9:

10:

11.

12:

13:

14.

15:

16:

17:

18:

If γ is free start tree construction

```
if mate[y] = 0 then
   augm(mate, parent, y);
   free \leftarrow free - 1;
   if parent[y] = 0 then
      parent[y] \leftarrow x;
```

Q. enqueue(mate[y]);

Algorithm 50 BiMatch(G, match)

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do

1: **for** $x \in V$ **do** $mate[x] \leftarrow 0$;

- 4: $r \leftarrow r + 1$
 - if mate[r] = 0 then
- 6: for i = 1 to m do $parent[i'] \leftarrow 0$
- $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; 7: while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true; 14. $free \leftarrow free - 1$: 15: else
 - if parent[y] = 0 then
- 16: 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

Initialize an empty tree. Note that only nodes i'have parent pointers.

Algorithm 50 BiMatch(G, match)

1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;

6:

- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
 - for i = 1 to m do parent[i'] $\leftarrow 0$
- $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; 7:
- while aug = false and $Q \neq \emptyset$ do 8: 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\gamma}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true; 14. $free \leftarrow free - 1$: 15: else
- 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

Q is a queue (BFS!!!). aua is a Boolean that stores whether we already found an augmenting path.

Algorithm 50 BiMatch(G, match) 1: for $x \in V$ do $mate[x] \leftarrow 0$:

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to m do parent[i'] $\leftarrow 0$ 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
- while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);

18:

- 13: *aug* ← true;
 - $free \leftarrow free 1$: else
- 14. 15: 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$;

Q. enqueue(mate[y]);

augment and there are still unexamined leaves continue...

as long as we did not

```
Algorithm 50 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
 7:
     Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
               x \leftarrow Q. dequeue();
9:
10:
               for \gamma \in A_{\gamma} do
```

else

if mate[y] = 0 then

 $free \leftarrow free - 1$:

aug ← true;

augm(mate, parent, y);

if parent[y] = 0 then

 $parent[y] \leftarrow x;$ Q. enqueue(mate[y]);

11:

12:

13:

14.

15:

16:

17:

18:

take next unexamined leaf

Algorithm 50 BiMatch(G, match) 1: for $x \in V$ do $mate[x] \leftarrow 0$:

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to m do parent[i'] $\leftarrow 0$
- 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; while aug = false and $Q \neq \emptyset$ do
- 8: 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\gamma}$ do
- 11: if mate[v] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true; 14. $free \leftarrow free - 1$:
- 15: else 16:
- if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

if x has unmatched neighbour we found an augmenting path (note that $y \neq r$ because we are in a bipartite graph)

```
Algorithm 50 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
          while aug = false and Q \neq \emptyset do
8:
9:
              x \leftarrow O. dequeue():
10:
               for \gamma \in A_{\chi} do
11:
                  if mate[y] = 0 then
12:
                      augm(mate, parent, y);
13:
                      aug ← true;
14.
                      free \leftarrow free - 1:
                  else
15:
16:
                      if parent[y] = 0 then
17:
                          parent[y] \leftarrow x;
```

18:

Q. enqueue(mate[y]);

do an augmentation...

Algorithm 50 BiMatch(G, match) 1: for $x \in V$ do $mate[x] \leftarrow 0$:

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then** 6: **for** i = 1 **to** m **do** $parent[i'] \leftarrow 0$
- 7: $Q \leftarrow \emptyset$; Q. append(r); $auq \leftarrow false$;
- 8: while aug = false and $Q \neq \emptyset$ do
- 9: $x \leftarrow Q$. dequeue(); 10: **for** $y \in A_x$ **do**
- 11: if mate[y] = 0 then
- 12: $\operatorname{augm}(mate, parent, y);$
- 15: else
 16: if parent[y] = 0 then
 17: $parent[y] \leftarrow x$;
 18: Q. enqueue(mate[y]);

ensures that the tree construction will not continue

setting aug = true

```
Algorithm 50 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
```

8: 9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

while aug = false and $Q \neq \emptyset$ do

aug ← true;

if parent[y] = 0 then

Q. enqueue(mate[y]);

 $parent[y] \leftarrow x$;

 $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

else

reduce number of free nodes

if mate[y] = 0 then augm(mate, parent, y); $free \leftarrow free - 1$:

```
Algorithm 50 BiMatch(G, match)

1: for x \in V do mate[x] \leftarrow 0;
2: r \leftarrow 0; free \leftarrow n;
3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6: for i = 1 to m do parent[i'] \leftarrow 0
7: Q \leftarrow \emptyset; Q \leftarrow 0; append(P \leftarrow 0); qout{aug} \leftarrow 0;
8: while qout{aug} = 0 false and qout{aug} \leftarrow 0;
9: qout{aug} \leftarrow 0
```

for $\gamma \in A_{\chi}$ do

else

if mate[y] = 0 then

 $free \leftarrow free - 1$:

aug ← true;

augm(mate, parent, y);

if parent[y] = 0 then $parent[y] \leftarrow x$;

Q. enqueue(mate[y]);

10:

11:

12:

13:

14.

15: 16:

17:

18:

if y is not in the tree yet

```
Algorithm 50 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
          while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue():
```

for $\gamma \in A_{\chi}$ do

else

if mate[y] = 0 then

 $free \leftarrow free - 1$:

aug ← true;

augm(mate, parent, y);

if parent[v] = 0 then

Q. enqueue(mate[y]);

 $parent[y] \leftarrow x$;

10:

11:

12:

13:

14.

15:

16:

17:

18:

...put it into the tree

Algorithm 50 BiMatch(G, match)

1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;

6:

7:

8: 9:

10:

11:

12:

13:

14.

3: while $free \ge 1$ and r < n do

4:
$$r \leftarrow r + 1$$

$$r+1$$
 $ato[x]=0$ then

5: **if**
$$mate[r] = 0$$
 then

- for i = 1 to m do parent[i'] $\leftarrow 0$
- $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
 - while aug = false and $Q \neq \emptyset$ do
 - $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

- if mate[y] = 0 then
 - augm(mate, parent, y);
 - *aug* ← true;
- $free \leftarrow free 1$: else
- 15: 16: if parent[y] = 0 then $parent[y] \leftarrow x$; 17: O. enqueue(mate[v]); 18:

add its buddy to the set of unexamined leaves