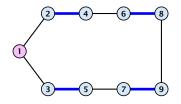
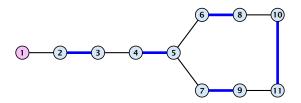

How to find an augmenting path?

Construct an alternating tree.

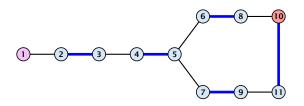




Definition 9

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

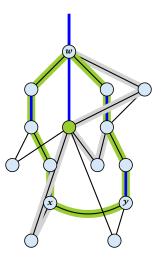


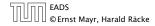
Properties:

- 1. A stem spans $2\ell + 1$ nodes and contains ℓ matched edges for some integer $\ell \ge 0$.
- **2.** A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at *r*).

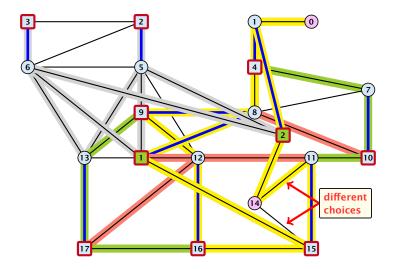
Properties:

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to *x* terminates with a matched edge and the odd path with an unmatched edge.




When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from *G* by contracting the blossom *B*.

- Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in V \ B that had at least one edge to a vertex from B.


Shrinking Blossoms

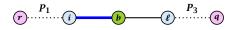
- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

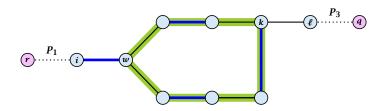
Example: Blossom Algorithm

Assume that we have contracted a blossom B w.r.t. a matching M whose base is w. We created graph G' = G/B with pseudonode b. Let M' be the matching in the contracted graph.

Lemma 10

If G' contains an augmenting path p' starting at r (or the pseudo-node containing r) w.r.t. to the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

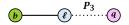


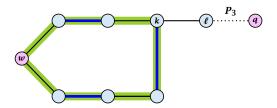

Proof.

If p' does not contain b it is also an augmenting path in G.

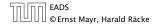
Case 1: non-empty stem

Next suppose that the stem is non-empty.




- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- ▶ $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Proof.


Case 2: empty stem

• If the stem is empty then after expanding the blossom, w = r.

• The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Lemma 11

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that *r* and *q* are the only free nodes in *G*.

Case 1: empty stem

Let *i* be the last node on the path *P* that is part of the blossom. *P* is of the form $P_1 \circ (i, j) \circ P_2$, for some node *j* and (i, j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Algorithm 50 search(r, found)		
1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i		
2: <i>found</i> ← false		
3: unlabel all nodes;		
4: give an even label to r and initialize $list \leftarrow \{r\}$		
5: while $list \neq \emptyset$ do		
6: delete a node <i>i</i> from <i>list</i>		
7: examine(<i>i</i> , <i>found</i>)		
8: if <i>found</i> = true then return		

Search for an augmenting path starting at r. A(i) contains neighbours of node i. We create a copy $\bar{A}(i)$ so that we later can shrink blossoms.

formed in instance Development allower

Examine the neighbours of a node i

For all neighbours j do...

You have found a blossom...

Algorithm	50	contract(i, j)
-----------	----	----------------

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$

3: label *b* even and add to *list*

- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B

6: delete nodes in *B* from the graph

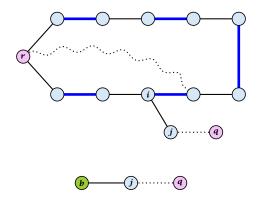
Contract blossom identified by

nodes *i* and *j*

Get all nodes of the blossom.

Time: $\mathcal{O}(m)$

EADS © Ernst Mayr, Harald Räcke


Identify all neighbours of b. 21 Maximum Matching in General Graphs

Time: $\mathcal{O}(m)$ (how?)

Analysis

- A contraction operation can be performed in time O(m).
 Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time O(m).
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- ► An augmentation requires time O(n). There are at most n of them.
- In total the running time is at most

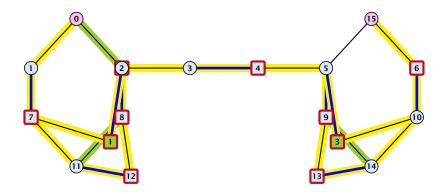
$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$
.

Case 2: non-empty stem

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.


This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

Example: Blossom Algorithm

