Mincost Flow

Problem Definition:

$$\begin{aligned} & \min & & \sum_{e} c(e) f(e) \\ & \text{s.t.} & & \forall e \in E: & 0 \leq f(e) \leq u(e) \\ & & \forall v \in V: & f(v) = b(v) \end{aligned}$$

- ightharpoonup G = (V, E) is a directed graph.
- ▶ $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$ is the capacity function.
- $ightharpoonup c: E
 ightharpoonup \mathbb{R}$ is the cost function (note that c(e) may be negative).
- ▶ $b: V \to \mathbb{R}$, $\sum_{v \in V} b(v) = 0$ is a demand function.

EADS © Ernst Mayr, Harald Räcke

518

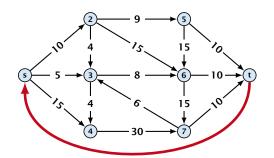
520

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- ▶ Given a flow network for a standard maxflow problem, and a value k.
- ▶ Set b(v) = 0 for every node apart from s or t. Set b(s) = -kand b(t) = k.
- ▶ Set edge-costs to zero, and keep the capacities.
- ▶ There exists a maxflow of value k if and only if the mincost-flow problem is feasible.

Solve Maxflow Using Mincost Flow



- Given a flow network for a standard maxflow problem.
- Set b(v) = 0 for every node. Keep the capacity function ufor all edges. Set the cost c(e) for every edge to 0.
- Add an edge from t to s with infinite capacity and cost -1.
- ▶ Then, $val(f^*) = -cost(f_{min})$, where f^* is a maxflow, and f_{\min} is a mincost-flow.

EADS © Ernst Mayr, Harald Räcke

15 Mincost Flow

519

Generalization

Our model:

$$\begin{aligned} & \min \quad \sum_{e} c(e) f(e) \\ & \text{s.t.} \quad \forall e \in E: \quad 0 \leq f(e) \leq u(e) \\ & \quad \forall v \in V: \quad f(v) = b(v) \end{aligned}$$

where $b: V \to \mathbb{R}$, $\sum_{v} b(v) = 0$; $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$; $c: E \to \mathbb{R}$;

A more general model?

$$\begin{aligned} & \min & & \sum_{e} c(e) f(e) \\ & \text{s.t.} & & \forall e \in E: & \ell(e) \leq f(e) \leq u(e) \\ & & \forall v \in V: & a(v) \leq f(v) \leq b(v) \end{aligned}$$

where $a: V \to \mathbb{R}$, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$;

Generalization

Differences

- Flow along an edge e may have non-zero lower bound $\ell(e)$.
- Flow along e may have negative upper bound u(e).
- ightharpoonup The demand at a node v may have lower bound a(v) and upper bound b(v) instead of just lower bound = upper bound = b(v).

EADS

EADS © Ernst Mayr, Harald Räcke

15 Mincost Flow

522

524

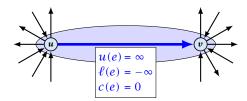
Reduction II

min $\sum_{e} c(e) f(e)$

s.t. $\forall e \in E : \ell(e) \leq f(e) \leq u(e)$

 $\forall v \in V : f(v) = b(v)$

We can assume that either $\ell(e) \neq -\infty$ or $u(e) \neq \infty$:



If c(e) = 0 we can contract the edge/identify nodes u and v.

If $c(e) \neq 0$ we can transform the graph so that c(e) = 0.

∐∐∐ © Ernst Mayr, Harald Räcke

min $\sum_{e} c(e) f(e)$

s.t. $\forall e \in E : \ell(e) \leq f(e) \leq u(e)$

 $\forall v \in V : a(v) \leq f(v) \leq b(v)$

We can assume that a(v) = b(v):

Add new node r.

Add edge (r, v) for all $v \in V$.

Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

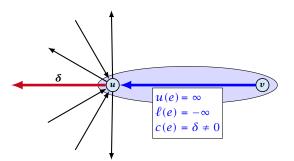
Set a(v) = b(v) for all $v \in V$.

Set $b(r) = -\sum_{v \in V} b(v)$.

 $-\sum_{v} b(v)$ is negative; hence r is only sending flow.

Reduction II

We can transform any network so that a particular edge has cost c(e) = 0:

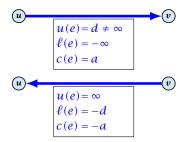


Additionally we set b(u) = 0.

Reduction III

$$\begin{aligned} & \text{min} & & \sum_{e} c(e) f(e) \\ & \text{s.t.} & & \forall e \in E: & \ell(e) \le f(e) \le u(e) \\ & & \forall v \in V: & f(v) = b(v) \end{aligned}$$

We can assume that $\ell(e) \neq -\infty$:



Replace the edge by an edge in opposite direction.

EADS © Ernst Mayr, Harald Räcke 15 Mincost Flow

526

Applications

Caterer Problem

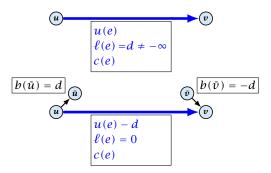
- ightharpoonup She needs to supply r_i napkins on N successive days.
- \triangleright She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

Reduction IV

min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$
 $\forall v \in V : f(v) = b(v)$

We can assume that $\ell(e) = 0$:

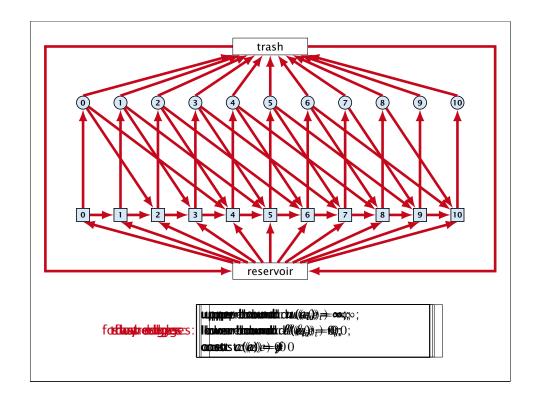


The added edges have infinite capacity and cost c(e)/2.

EADS © Ernst Mayr, Harald Räcke

15 Mincost Flow

527



Residual Graph

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, u) has capacity z and a cost of -c((u,v)).

EADS © Ernst Mayr, Harald Räcke 15 Mincost Flow

530

Lemma 1

 $g = f^* - f$ is obtained by computing $\Delta(e) = f^*(e) - f(e)$ for every edge e = (u, v). If the result is positive set $g((u, v)) = \Delta(e)$ A given flow is a mi and g((v,u)) = 0; otw. set g((u,v)) = 0 and $g((v,u)) = -\Delta(e)$. residual graph G_f does not have a feasible circulation of negative cost.

 \Rightarrow Suppose that q is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

 \leftarrow Let f be a non-mincost flow, and let f^* be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending -f in the residual graph (pushing all flow back) we arrive at the original graph; for this f^* is clearly feasible)

15 Mincost Flow

A circulation in a graph G = (V, E) is a function $f : E \to \mathbb{R}^+$ that has an excess flow f(v) = 0 for every node $v \in V$.

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of G.

EADS © Ernst Mayr, Harald Räcke

15 Mincost Flow

531

15 Mincost Flow

Lemma 2

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \to \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- ▶ Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.

|||||||||| © Ernst Mayr, Harald Räcke

15 Mincost Flow

533

15 Mincost Flow

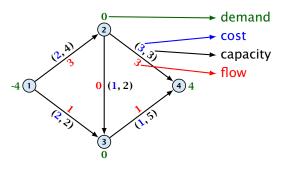
Algorithm 49 CycleCanceling(G = (V, E), c, u, b)

- 1: establish a feasible flow f in G
- 2: while G_f contains negative cycle do
- use Bellman-Ford to find a negative circuit Z
- $\delta \leftarrow \min\{u_f(e) \mid e \in Z\}$ 4:
- augment δ units along Z and update G_f 5:

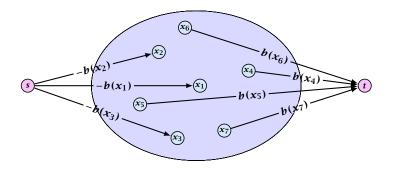
EADS © Ernst Mayr, Harald Räcke 15 Mincost Flow

534

15 Mincost Flow



How do we find the initial feasible flow?



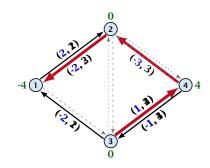
- Connect new node s to all nodes with negative b(v)-value.
- Connect nodes with positive b(v)-value to a new node t.
- ► There exist a feasible flow in the original graph iff in the resulting graph there exists an s-t flow of value

$$\sum_{v:b(v)<0} (-b(v)) = \sum_{v:b(v)>0} b(v) \ .$$

15 Mincost Flow

пп EADS

EADS © Ernst Mayr, Harald Räcke



15 Mincost Flow

Lemma 3

The improving cycle algorithm runs in time $\mathcal{O}(nm^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \leq C$ and $|u(e)| \leq U$.

- ▶ Running time of Bellman-Ford is O(mn).
- ▶ Pushing flow along the cycle can be done in time O(m).
- ► Each iteration decreases the total cost by at least 1.
- ► The true optimum cost must lie in the interval [-CU,...,+CU].

Note that this lemma is weak since it does not allow for edges with infinite capacity.

15 Mincost Flow

538

15 Mincost Flow

A general mincost flow problem is of the following form:

$$\begin{aligned} & \min & & \sum_{e} c(e) f(e) \\ & \text{s.t.} & & \forall e \in E: & \ell(e) \leq f(e) \leq u(e) \\ & & & \forall v \in V: & a(v) \leq f(v) \leq b(v) \end{aligned}$$

where
$$a: V \to \mathbb{R}$$
, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$;

Lemma 4 (without proof)

A general mincost flow problem can be solved in polynomial time.

15 Mincost Flow

539