4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- ▶ ...

EADS © Ernst Mayr, Harald Räcke

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose n numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is ninstead of e.g. $n \log N$, which would be the number of bits required to encode the input.

	EADS © Ernst Mayr, Harald R	
	© Ernst Mayr, Harald R	äcke

20

18

4 Modelling Issues

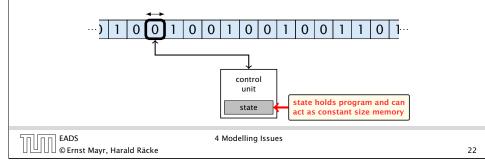
How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Ω(n log n) comparisons in the worst case".

EADS 4 Modelling Issues © Ernst Mayr, Harald Räcke

Model of Computation

How to measure performance


- Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

19

Turing Machine

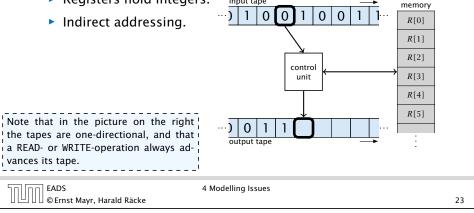
- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have guadratic lower bound.
- \Rightarrow Not a good model for developing efficient algorithms.

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations $(R[i] \rightarrow \text{output tape})$
 - ► WRITE *i*
- register-register transfers
 - ▶ R[i] := R[i]
 - ▶ R[i] := 4
- indirect addressing
 - ▶ R[i] := R[R[i]]loads the content of the R[i]-th into the *j*-th register
 - R[R[i]] := R[j]loads the content of the *j*-th into the R[i]-th register

EADS ∐|∐∐©Ernst Mayr, Harald Räcke


24

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$

input tape

Registers hold integers.

Random Access Machine (RAM) Operations branching (including loops) based on comparisons ▶ jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x] \blacktriangleright jumpz x R[i]jump to x if R[i] = 0if not the instruction counter is increased by 1; jumpi i jump to *R*[*i*] (indirect jump); • arithmetic instructions: $+, -, \times, /$ • R[i] := R[j] + R[k];R[i] := -R[k];The jump-directives are very close to the jump-instructions contained in the assembler language of real machines. EADS 4 Modelling Issues © Ernst Mayr, Harald Räcke

Model of Computation

uniform cost model
Every operation takes time 1.

- logarithmic cost model The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed w, where usually $w = \log_2 n$.

The latter model is quite realistic as the word-size of a standard computer that handles a problem of size nmust be at least $\log_2 n$ as otherwise the computer could either not store the problem instance or not address all its memory.

EADS © Ernst Mayr, Harald Räcke

```
4 Modelling Issues
```

26

C(x) cost of instance

instance x set of instances

of length n

|x|

In

input length of

28

There are different types of complexity bounds:

best-case complexity:

$$C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{\rm WC}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

more general: probability measure μ

$$C_{\mathrm{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

EADS ©Ernst Mayr, Harald Räcke 4 Modelling Issues

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)	
1: $\gamma \leftarrow 2$;	
1: $r \leftarrow 2$; 2: for $i = 1 \rightarrow n$ do	
3: $r \leftarrow r^2$	
4: return γ	
4. return 7	

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - uniform model: $\mathcal{O}(1)$
 - logarithmic model: $\mathcal{O}(2^n)$

EADS 4 Modelling Issues © Ernst Mayr, Harald Räcke 27

There are different types of complexity bounds:

amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x. Then take the worst-case over all x with |x| = n.

EADS © Ernst Mayr, Harald Räcke

28