
Analysis

ñ The current matching does not have any edges from Vodd to

outside of L \ Veven (edges that may possibly be deleted by

changing weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we otain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

EADS 19 Weighted Bipartite Matching

© Ernst Mayr, Harald Räcke 572

A Fast Matching Algorithm

Algorithm 50 Bimatch-Hopcroft-Karp(G)
1: M ← �
2: repeat

3: let P = {P1, . . . , Pk} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: M ← M ⊕ (P1 ∪ · · · ∪ Pk)
6: until P = �
7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 573

Analysis

Lemma 4

Given a matching M and a maximal matching M∗ there exist

|M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting paths.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in

this graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a blue edge. These are

augmenting paths w.r.t. M.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 574

Analysis

ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).
ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 5

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 575

Analysis

Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 576

Analysis

Lemma 6

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows

from the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 577

Analysis

If the shortest augmenting path w.r.t. a matching M has ` edges

then the cardinality of the maximum matching is of size at most

|M| + |V |
`+1 .

Proof.

The symmetric difference between M and M∗ contains

|M∗| − |M| vertex-disjoint augmenting paths. Each of these

paths contains at least ` + 1 vertices. Hence, there can be at

most |V |
`+1 of them.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 578

Analysis

Lemma 7

The Hopcroft-Karp algorithm requires at most 2
√|V | phases.

Proof.

ñ After iteration b√|V |c the length of a shortest augmenting

path must be at least b√|V |c + 1 ≥ √|V |.
ñ Hence, there can be at most |V |/(√|V | + 1) ≤ √|V |

additional augmentations.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 579

Analysis

Lemma 8

One phase of the Hopcroft-Karp algorithm can be implemented

in time O(m).

ñ Do a breadth first search starting at all free vertices in the

left side L.

(alternatively add a super-startnode; connect it to all free vertices

in L and start breadth first search from there)

ñ The search stops when reaching a free vertex. However, the

current level of the BFS tree is still finished in order to find a

set F of free vertices (on the right side) that can be reached

via shortest augmenting paths.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 580

Analysis
ñ Then a maximal set of shortest path from the leftmost layer

of the tree construction to nodes in F needs to be

computed.
ñ Any such path must visit the layers of the BFS-tree from left

to right.
ñ To go from an odd layer to an even layer it must use a

matching edge.
ñ To go from an even layer to an odd layer edge it can use

edges in the BFS-tree or edges that have been ignored

during BFS-tree construction.
ñ We direct all edges btw. an even node in some layer ` to an

odd node in layer ` + 1 from left to right.
ñ A DFS search in the resulting graph gives us a maximal set

of vertex disjoint path from left to right in the resulting

graph.

EADS 20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Räcke 581

s

How to find an augmenting path?

Construct an alternating tree.

u

x

y

w

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w path is called
the stem of the blossom.

EADS 21 Maximum Matching in General Graphs

© Ernst Mayr, Harald Räcke 583

