A Fast Matching Algorithm

Algorithm 50 Bimatch-Hopcroft-Karp(G)

3: let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of 4: vertex-disjoint, shortest augmenting path w.r.t. M. 5: $M \leftarrow M \oplus (P_1 \cup \dots \cup P_k)$ 6: until $\mathcal{P} = \emptyset$

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ightharpoonup The connected components of G are cycles and paths.
- ▶ The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 5

The set $A \stackrel{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

Proof.

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ▶ Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Lemma 6

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M|+\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Lemma 7

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ▶ After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

Lemma 8

One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

- Do a breadth first search starting at all free vertices in the left side L.
 - (alternatively add a super-startnode; connect it to all free vertices in L and start breadth first search from there)
- ▶ The search stops when reaching a free vertex. However, the current level of the BFS tree is still finished in order to find a set *F* of free vertices (on the right side) that can be reached via shortest augmenting paths.

- Then a maximal set of shortest path from the leftmost layer of the tree construction to nodes in F needs to be computed.
- Any such path must visit the layers of the BFS-tree from left to right.
- To go from an odd layer to an even layer it must use a matching edge.
- To go from an even layer to an odd layer edge it can use edges in the BFS-tree or edges that have been ignored during BFS-tree construction.
- We direct all edges btw. an even node in some layer ℓ to an odd node in layer $\ell+1$ from left to right.
- A DFS search in the resulting graph gives us a maximal set of vertex disjoint path from left to right in the resulting graph.

