- P. makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ P. union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

- ▶ **P.** makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ **P.** union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

- ▶ **P.** makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ P. union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

- ▶ **P.** makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ P. union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

Applications:

- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

Applications:

- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

Algorithm 20 Kruskal-MST(G = (V, E), w)1: $A \leftarrow \emptyset$; 2: for all $v \in V$ do 3: $v \cdot \text{set} \leftarrow \mathcal{P}$. makeset $(v \cdot \text{label})$ 4: sort edges in non-decreasing order of weight w5: for all $(u, v) \in E$ in non-decreasing order do 6: if \mathcal{P} . find $(u \cdot \text{set}) \neq \mathcal{P}$. find $(v \cdot \text{set})$ then

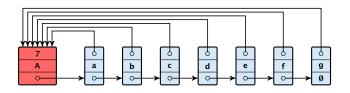
 $A \leftarrow A \cup \{(u, v)\}$

 \mathcal{P} . union(u. set, v. set)

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.

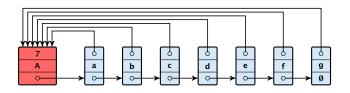
- ightharpoonup makeset(x) can be performed in constant time.
- find(x) can be performed in constant time.

- ► The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.



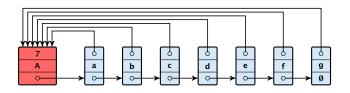
- ightharpoonup makeset(x) can be performed in constant time.
- ightharpoonup find(x) can be performed in constant time.

- ► The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.



- makeset(x) can be performed in constant time.
- ightharpoonup find(x) can be performed in constant time.

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.



- ightharpoonup makeset(x) can be performed in constant time.
- $ightharpoonup \operatorname{find}(x)$ can be performed in constant time.

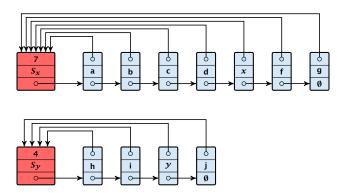
- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x .
- ▶ Insert list S_y at the head of S_x .
- ▶ Adjust the size-field of list S_x .
- ▶ Time: $\min\{|S_x|, |S_y|\}$.

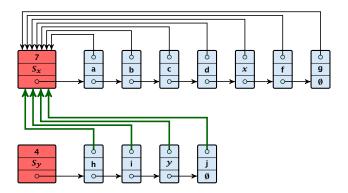
- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x .
- ▶ Insert list S_{γ} at the head of S_{χ} .
- ▶ Adjust the size-field of list S_x .
- ▶ Time: $\min\{|S_x|, |S_y|\}$.

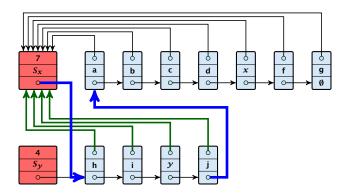
- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x .
- ▶ Insert list S_y at the head of S_x .
- ▶ Adjust the size-field of list S_x .
- ▶ Time: $\min\{|S_x|, |S_y|\}$.

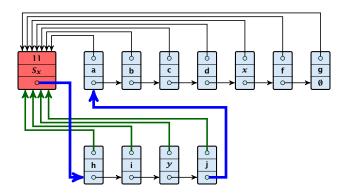
- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x .
- ▶ Insert list S_y at the head of S_x .
- Adjust the size-field of list S_x .
- ► Time: $\min\{|S_x|, |S_y|\}$

- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x .
- ▶ Insert list S_y at the head of S_x .
- Adjust the size-field of list S_x .
- ► Time: $\min\{|S_x|, |S_y|\}$.









Running times:

- ightharpoonup find(x): constant
- makeset(x): constant
- union(x, y): O(n), where n denotes the number of elements contained in the set system.

Lemma 1

The list implementation for the ADT union find fulfills the following amortized time bounds:

- find(x): $\mathcal{O}(1)$.
- ▶ makeset(x): $\mathcal{O}(\log n)$.
- union(x, y): $\mathcal{O}(1)$.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

 $\mathbf{makeset}(\mathbf{x})$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

```
union(x, y):
```

- If $S_2 = S_2$ the cost is constant, no bank accounts changes
 - Onw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|)\}$
- Assume wlog, that S_{α} is the smaller set, let c denote the
- hidden constant, i.e., the actual cost is at most $c \circ |S_{\mathcal{X}}|$.
- Charge c to every element in set S_Z .

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

 $\operatorname{find}(x)$: For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

```
union(x, y):
```

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: O(1).

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_X is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_X|$.
- ▶ Charge c to every element in set S_x .

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_X is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_X|$.
- ▶ Charge c to every element in set S_x .

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: O(1).

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.
- \triangleright Charge c to every element in set S_{r} .

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: O(1).

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.
- ▶ Charge c to every element in set S_x .

Lemma 2

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

Lemma 2

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

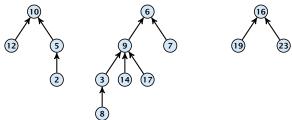
Proof.

Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $|\log n|$ times.

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example

Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:



Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.

makeset(x)

Create a singleton tree. Return pointer to the root.

```
ightharpoonup Time: \mathcal{O}(1).
```

```
find(x)
```

Start at element x in the tree. Go upwards until you reach the root.

```
Time: O(\text{level}(x)), where \text{level}(x) is the distance of
```


makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: $\mathcal{O}(1)$.

```
find(x)
```

the root.

Time: $\mathcal{O}(\operatorname{level}(x))$, where $\operatorname{level}(x)$ is the distance of

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: $\mathcal{O}(1)$.

find(x)

- Start at element x in the tree. Go upwards until you reach the root.
- ► Time: O(level(x)), where level(x) is the distance of element x to the root in its tree. Not constant

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: $\mathcal{O}(1)$.

find(x)

- Start at element x in the tree. Go upwards until you reach the root.
- ► Time: $\mathcal{O}(\text{level}(x))$, where level(x) is the distance of element x to the root in its tree. Not constant.

To support union we store the size of a tree in its root.

FADS

To support union we store the size of a tree in its root.

union(x, y)

▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).

To support union we store the size of a tree in its root.

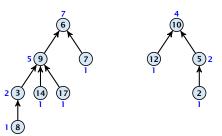
- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- ightharpoonup link(a, b) attaches the smaller tree as the child of the larger.

To support union we store the size of a tree in its root.

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- ▶ link(a, b) attaches the smaller tree as the child of the larger.
- ▶ In addition it updates the size-field of the new root.

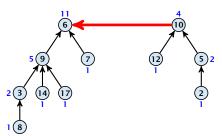
To support union we store the size of a tree in its root.

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- ▶ link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



To support union we store the size of a tree in its root.

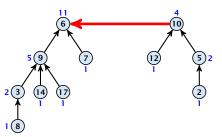
- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- ightharpoonup link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- ▶ link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



▶ Time: constant for link(a, b) plus two find-operations.

Lemma 3

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Lemma 3

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 \, size(c)$, for any pair of nodes (p,c), where p is a parent of c.

Lemma 3

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

- When we attach a tree with root c to become a child of a tree with root p, then size(p) ≥ 2 size(c), where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 \, size(c)$, for any pair of nodes (p,c), where p is a parent of c.

Lemma 3

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 \, size(c)$, for any pair of nodes (p, c), where p is a parent of c.

Lemma 3

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 \, size(c)$, for any pair of nodes (p, c), where p is a parent of c.

find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

find(x):

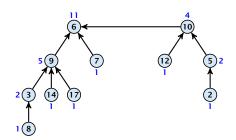
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

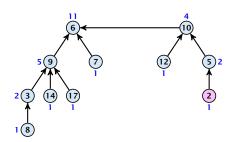
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



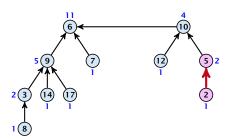
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



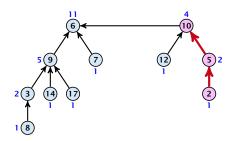
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



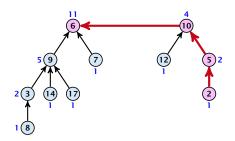
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



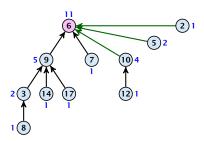
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



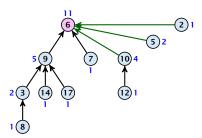
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

Amortized Analysis

Definitions:

size(v): the number of nodes that were in the sub-tree
 rooted at v when v became the child of another node (c

the number of nodes if v is the root).

 $\operatorname{rank}(v) = \lfloor \log(\operatorname{size}(v)) \rfloor$

 $\operatorname{size}(v) \geq 2^{\operatorname{rank}(v)}$.

Lemma 4

The rank of a parent must be strictly larger than the rank of a child.

Amortized Analysis

Definitions:

- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
- $ightharpoonup \operatorname{rank}(v)$: $\lfloor \log(\operatorname{size}(v)) \rfloor$.
- $ightharpoonup \Rightarrow \operatorname{size}(v) \geq 2^{\operatorname{rank}(v)}.$

Lemma 4

The rank of a parent must be strictly larger than the rank of a child.

Definitions:

- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
- rank(v): $\lfloor \log(\operatorname{size}(v)) \rfloor$.

```
\Rightarrow size(v) \ge 2^{\operatorname{rank}(v)}.
```

Lemma 4

The rank of a parent must be strictly larger than the rank of a child.

Definitions:

- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
- rank(v): $\lfloor \log(\operatorname{size}(v)) \rfloor$.
- ightharpoonup \Rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

Lemma 4

The rank of a parent must be strictly larger than the rank of a child.

Definitions:

- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
- ightharpoonup rank(v): $\lfloor \log(\operatorname{size}(v)) \rfloor$.
- \Rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

Lemma 4

The rank of a parent must be strictly larger than the rank of a child.

Lemma 5

There are at most $n/2^s$ nodes of rank s.

Lemma 5

There are at most $n/2^s$ nodes of rank s.

- Let's say a node v sees the rank s node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contains v during the running time of the algorithm is a strictly increasing sequence.
- ► Hence, every node *sees* at most one rank *s* node, but every rank *s* node is seen by at least 2^{*s*} different nodes.

Lemma 5

There are at most $n/2^s$ nodes of rank s.

- Let's say a node v sees the rank s node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contains v during the running time of the algorithm is a strictly increasing sequence.
- ► Hence, every node *sees* at most one rank *s* node, but every rank *s* node is seen by at least 2^s different nodes.

Lemma 5

There are at most $n/2^s$ nodes of rank s.

- Let's say a node v sees the rank s node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contains v during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node sees at most one rank s node, but every rank s node is seen by at least 2s different nodes.

Lemma 5

There are at most $n/2^s$ nodes of rank s.

- ► Let's say a node v sees the rank s node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contains v during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node sees at most one rank s node, but every rank s node is seen by at least 2s different nodes.

We define

$$tow(i) := \begin{cases} 1 & \text{if } i = 0 \\ 2^{tow(i-1)} & \text{otw.} \end{cases}$$

We define

$$tow(i) := \begin{cases} 1 & \text{if } i = 0 \\ 2^{tow(i-1)} & \text{otw.} \end{cases}$$
 $tow(i) = 2^{2^{2^{2^{2^{2}}}}} i \text{ times}$

We define

$$tow(i) := \begin{cases} 1 & \text{if } i = 0 \\ 2^{tow(i-1)} & \text{otw.} \end{cases}$$
 $tow(i) = 2^{2^{2^{2^2}}} i \text{ times}$

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$$

We define

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$$

Theorem 6

Union find with path compression fulfills the following amortized running times:

- ightharpoonup makeset(x) : $\mathcal{O}(\log^*(n))$
- find(x): $\mathcal{O}(\log^*(n))$
- union(x, y) : $\mathcal{O}(\log^*(n))$

In the following we assume $n \ge 3$.

In the following we assume $n \ge 3$.

- A node with rank rank(v) is in rank group $\log^*(\operatorname{rank}(v))$.
- ▶ The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) 1$ (which holds for $n \ge 3$).
- \blacktriangleright Hence, the total number of rank-groups is at most $\log^* n$

In the following we assume $n \ge 3$.

- ▶ A node with rank rank(v) is in rank group $\log^*(\operatorname{rank}(v))$.
- ► The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) 1$ (which holds for $n \ge 3$)
- \triangleright Hence, the total number of rank-groups is at most $\log^* n$.

In the following we assume $n \ge 3$.

- A node with rank rank(v) is in rank group $\log^*(\operatorname{rank}(v))$.
- ► The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) 1$ (which holds for $n \ge 3$)
- ▶ Hence, the total number of rank-groups is at most $\log^* n$

In the following we assume $n \ge 3$.

- ▶ A node with rank rank(v) is in rank group $\log^*(\operatorname{rank}(v))$.
- ► The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \leq \log^*(n) 1$ (which holds for $n \geq 3$).
- ▶ Hence, the total number of rank-groups is at most $\log^* n$

In the following we assume $n \ge 3$.

- ▶ A node with rank rank(v) is in rank group $\log^*(\operatorname{rank}(v))$.
- ► The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \leq \log^*(n) 1$ (which holds for $n \geq 3$).
- ▶ Hence, the total number of rank-groups is at most $\log^* n$.

Accounting Scheme

- create an account for every find-operation create an account for every node ν
- The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:
 - If parent[v] is the root we charge the cost to the
 - nno-account.
 - If the group-number of rank(v) is the same as that of
 - that of the cost to the node-account of the
 - Otherwise we charge the cost to the find-account;

Accounting Scheme:

- create an account for every find-operation
- ightharpoonup create an account for every node v

- If parent[v] is the root we charge the cost to the
 - find-account.
- If the group-number of rank(v) is the same as that o
- charge the cost to the node-account of p.
- Otherwise we charge the cost to the find-account.

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

```
If parent[v] is the root we charge the cost to there
```

- find-account.
- If the group-number of rank(v) is the same as that offers
- that the cost to the sole-acquired by
- Otherwise we charge the cost to the find-account.

Accounting Scheme:

- create an account for every find-operation
- ightharpoonup create an account for every node v

- ▶ If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned.
 The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ► The total charge made to a node in rank-group g is at most $tow(g) tow(g-1) \le tow(g)$.

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned.
 The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ► The total charge made to a node in rank-group g is at most $tow(g) tow(g-1) \le tow(g)$.

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned.
 The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ► The total charge made to a node in rank-group g is at most $tow(g) tow(g-1) \le tow(g)$.

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned.
 The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ▶ The total charge made to a node in rank-group g is at most $tow(g) tow(g-1) \le tow(g)$.

What is the total charge made to nodes?

The total charge is at most

$$\sum_{g} n(g) \cdot \text{tow}(g)$$
,

where n(g) is the number of nodes in group g.

What is the total charge made to nodes?

► The total charge is at most

$$\sum_{g} n(g) \cdot \text{tow}(g) ,$$

where n(g) is the number of nodes in group g.

n(g)

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s}$$

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s}$$

$$\begin{split} n(g) & \leq \sum_{s = \mathsf{tow}(g-1)+1}^{\mathsf{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\mathsf{tow}(g)-\mathsf{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \end{split}$$

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s}$$
$$\le \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \le \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

不問 トイラトイラン

$$\begin{split} n(g) & \leq \sum_{s = \mathsf{tow}(g-1)+1}^{\mathsf{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\mathsf{tow}(g)-\mathsf{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \cdot 2 \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)}} \end{split}$$

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^{s}} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^{s}}$$

$$\le \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}} \le \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$\le \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)}.$$

<**□** > < ≥ > < ≥ >

$$\begin{split} n(g) & \leq \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \leq \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2 \\ & \leq \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} \ . \end{split}$$

Hence,

$$\sum_{g} n(g) \text{ tow}(g)$$

$$\begin{split} n(g) & \leq \sum_{s = \mathsf{tow}(g-1)+1}^{\mathsf{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\mathsf{tow}(g)-\mathsf{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \cdot 2 \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)}} = \frac{n}{\mathsf{tow}(g)} \ . \end{split}$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g) \le n(0) \operatorname{tow}(0) + \sum_{g \ge 1} n(g) \operatorname{tow}(g)$$

$$\begin{split} n(g) & \leq \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \leq \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2 \\ & \leq \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} \ . \end{split}$$

Hence.

$$\sum_{g} n(g) \operatorname{tow}(g) \leq n(0) \operatorname{tow}(0) + \sum_{g \geq 1} n(g) \operatorname{tow}(g) \leq n \log^*(n)$$

Amortized Analysis

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

Amortized Analysis

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

$$A(x,y) = \begin{cases} y+1 & \text{if } x = 0 \\ A(x-1,1) & \text{if } y = 0 \\ A(x-1,A(x,y-1)) & \text{otw.} \end{cases}$$

$$\alpha(m,n) = \min\{i \ge 1 : A(i,\lfloor m/n \rfloor) \ge \log n\}$$

$$A(0, y) = y + 1$$

$$A(1,y) = y + 2$$

$$A(2, y) = 2y + 3$$

$$A(3, y) = 2^{y+3} - 3$$

$$A(4, y) = 2^{2^2} -3$$

$$A(x,y) = \left\{ \begin{array}{ll} y+1 & \text{if } x=0 \\ A(x-1,1) & \text{if } y=0 \\ A(x-1,A(x,y-1)) & \text{otw.} \end{array} \right.$$

$$\alpha(m,n) = \min\{i \geq 1 : A(i,\lfloor m/n \rfloor) \geq \log n\}$$

- $A(0, \nu) = \nu + 1$
- $A(1, \nu) = \nu + 2$
- A(2, y) = 2y + 3
- ► $A(3, y) = 2^{y+3} 3$ ► $A(4, y) = 2^{2^{2^2}} 3$