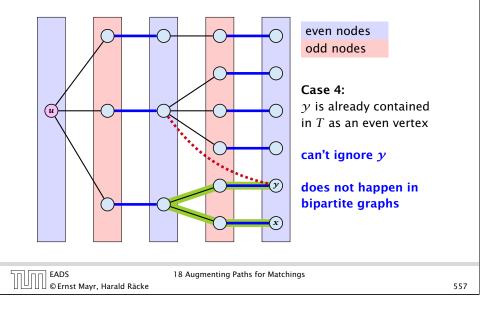


Algor	ithm 50 BiMatch(G, match)	
1: fo	$x \in V$ do <i>mate</i> [x] \leftarrow 0;	
2: r 🗸	$-0; free \leftarrow n;$	graph $G = (S \cup S', E)$
3: wh	ile $free \ge 1$ and $r < n$ do	
4:	$r \leftarrow r + 1$	$S = \{1, \ldots, n\}$
5:	if $mate[r] = 0$ then	$S' = \{1', \dots, n'\}$
6:	for $i = 1$ to m do $parent[i'] \leftarrow 0$	
7:	$Q \leftarrow \emptyset$; Q . append (r) ; $aug \leftarrow$ false;	start with an
8:	while $aug = false$ and $Q \neq \emptyset$ do	empty matching
9:	$x \leftarrow Q$. dequeue();	
10:	for $y \in A_x$ do	free: number of
11:	if $mate[y] = 0$ then	unmatched nodes in
12:	augm(mate, parent, y);	S
13:	<i>aug</i> ← true;	\boldsymbol{r} : root of current tree
14:	free \leftarrow free -1 ;	
15:	else	as long as there are
16:	if $parent[y] = 0$ then	unmatched nodes and
17:	$parent[y] \leftarrow x;$	we did not yet try to
18:	Q .enqueue(<i>mate</i> [γ]);	grow from all nodes we

r is the new node that

How to find an augmenting path?

Construct an alternating tree.



19 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph $G = L \cup R, E$.
- an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- ▶ assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$

EADS © Ernst Mayr, Harald Räcke

Weighted Bipartite Matching

Theorem 3 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

EADS ©Ernst Mayr, Harald Räcke 19 Weighted Bipartite Matching

560

Halls Theorem

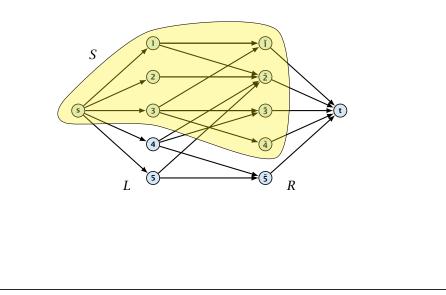
Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let *S* denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of *S* inside *L* and *R*, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

EADS 19 V © Ernst Mayr, Harald Räcke

19 Weighted Bipartite Matching

19 Weighted Bipartite Matching



Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

 $x_u + x_v \ge w_e$ for every edge e = (u, v).

- Let $H(\vec{x})$ denote the subgraph of *G* that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Algorithm Outline

Reason:

• The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v$$

► Any other matching *M* has

$$\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u + x_v) \leq \sum_v x_v .$$

EADS © Ernst Mayr, Harald Räcke 19 Weighted Bipartite Matching

564

Changing Node Weights Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$. Total node-weight decreases. • Only edges from *S* to $R - \Gamma(S)$ $+\delta \Gamma(S)$ decrease in their weight. Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence S $-\delta$ would go between *S* and $\Gamma(S)$) we can do this decrement for small enough $\delta > 0$ until a new edge gets tight. R EADS 19 Weighted Bipartite Matching 📙 🛛 🖉 © Ernst Mayr, Harald Räcke 566

Algorithm Outline

What if you don't find a perfect matching?

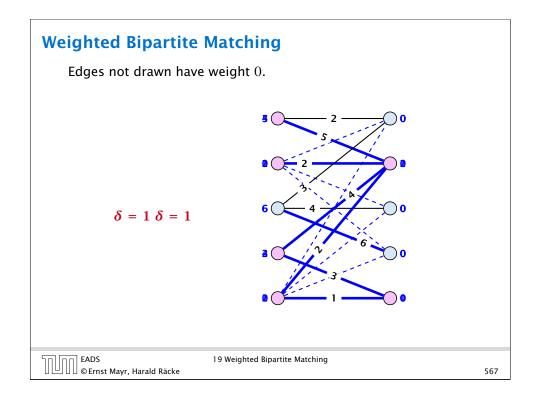
Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

	19 Weighted Bipartite Matching	
EADS ©Ernst Mayr, Harald Räcke		565

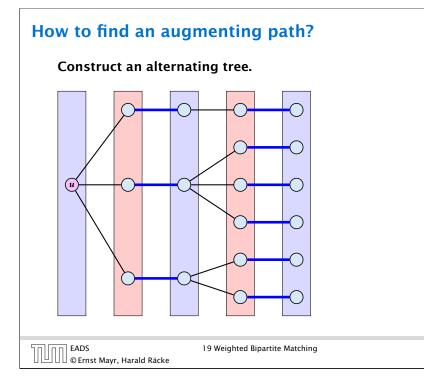


Analysis

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L S and $R \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

	19 Weighted Bipartite Matching	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		568



Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

EADS 19 W © Ernst Mayr, Harald Räcke

19 Weighted Bipartite Matching

569

Analysis

How do we find S?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*.
 Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

570

Analysis

- The current matching does not have any edges from V_{odd} to outside of $L \setminus V_{even}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd} . After at most nreweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

			ĺ –
	19 Weighted Bipartite Matching		
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		572	İ

Analysis

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- The connected components of *G* are cycles and paths.
- The graph contains $k \leq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

[הח]	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

A Fast Matching Algorithm

Algorithm 50 Bimatch-Hopcroft-Karp(*G*) 1: $M \leftarrow \emptyset$ 2: repeat let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of 3: vertex-disjoint, shortest augmenting path w.r.t. M. 4: $M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$ 5: 6: **until** $\mathcal{P} = \emptyset$ 7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

EADS © Ernst Mayr, Harald Räcke

20 The Hopcroft-Karp Algorithm

Analysis

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 5

The set $A \stackrel{\text{\tiny def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

573