7.3 AVL-Trees

Definition 1

AVL-trees are binary search trees that fulfill the following balance condition. For every node v

$$
\mid \text { height }(\text { left sub-tree }(v))-\operatorname{height}(\text { right sub-tree }(v)) \mid \leq 1 .
$$

Lemma 2

An AVL-tree of height h contains at least $F_{h+2}-1$ and at most $2^{h}-1$ internal nodes, where F_{n} is the n-th Fibonacci number ($F_{0}=0, F_{1}=1$), and the height is the maximal number of edges from the root to an (empty) dummy leaf.

Proof.

The upper bound is clear, as a binary tree of height h can only contain

$$
\sum_{j=0}^{h-1} 2^{j}=2^{h}-1
$$

internal nodes.

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height $h=1$ contains at least one internal node, $1 \geq F_{3}-1=2-1=1$.
2. an AVL tree of height $h=2$ contains at least two internal nodes, $2 \geq F_{4}-1=3-1=2$

Induction step:

An AVL-tree of height $h \geq 2$ of minimal size has a root with sub-trees of height $h-1$ and $h-2$, respectively. Both, sub-trees have minmal node number.

Let

$$
g_{h}:=1+\text { minimal size of AVL-tree of height } h .
$$

Then

$$
\begin{aligned}
g_{1} & =2 & & =F_{3} \\
g_{2} & =3 & & =F_{4} \\
g_{h}-1 & =1+g_{h-1}-1+g_{h-2}-1, & & \text { hence } \\
g_{h} & =g_{h-1}+g_{h-2} & & =F_{h+2}
\end{aligned}
$$

7.3 AVL-Trees

An AVL-tree of height h contains at least $F_{h+2}-1$ internal nodes. Since

$$
n+1 \geq F_{h+2}=\Omega\left(\left(\frac{1+\sqrt{5}}{2}\right)^{h}\right)
$$

we get

$$
n \geq \Omega\left(\left(\frac{1+\sqrt{5}}{2}\right)^{h}\right)
$$

and, hence, $h=\mathcal{O}(\log n)$.

EADS

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the node. Let v denote a tree node with left child c_{ℓ} and right child c_{r}.

$$
\operatorname{balance}[v]:=\operatorname{height}\left(T_{c_{\ell}}\right)-\operatorname{height}\left(T_{c_{r}}\right),
$$

where $T_{c_{\ell}}$ and $T_{c_{r}}$, are the sub-trees rooted at c_{ℓ} and c_{r}, respectively.

Rotations

The properties will be maintained through rotations:

Double Rotations

AVL-trees: Insert

Note that before the insertion w is right ; above the leaf level, i.e., x replaces a i child of w that was a dummy leaf.

- Insert like in a binary search tree.
- Let w denote the parent of the newly inserted node x.
- One of the following cases holds:

$\operatorname{bal}(w)=-1$

$\operatorname{bal}(w)=0$

$\operatorname{bal}(w)=0$

$\operatorname{bal}(w)=1$
- If $\operatorname{bal}[w] \neq 0, T_{w}$ has changed height; the balance-constraint may be violated at ancestors of w.
- Call AVL-fix-up-insert(parent[w]) to restore the balance-condition.

AVL-trees: Insert

Invariant at the beginning of AVL-fix-up-insert(v):

1. The balance constraints hold at all descendants of v.
2. A node has been inserted into T_{c}, where c is either the right or left child of v.
3. $T_{\mathcal{C}}$ has increased its height by one (otw. we would already have aborted the fix-up procedure).
4. The balance at node c fulfills balance $[c] \in\{-1,1\}$. This holds because if the balance of c is 0 , then T_{c} did not change its height, and the whole procedure would have been aborted in the previous step.

AVL-trees: Insert

```
Algorithm 11 AVL-fix-up-insert ( \(v\) )
1: if balance \([v] \in\{-2,2\}\) then DoRotationInsert \((v)\);
2: if balance \([v] \in\{0\}\) return;
3: AVL-fix-up-insert(parent[ \(v\) ]);
```

We will show that the above procedure is correct, and that it will do at most one rotation.

AVL-trees: Insert

```
Algorithm 12 DoRotationInsert(v)
    1: if balance[v] = -2 then // insert in right sub-tree
    2: if balance[right[v]]=-1 then
    3: LeftRotate(v);
    4: else
    5: DoubleLeftRotate(v);
    6: else // insert in left sub-tree
    7: if balance[left[v]]=1 then
    8: RightRotate(v);
    9: else
10: DoubleRightRotate(v);
```


AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

We show that after doing a rotation at v :

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- The height of T_{v} is the same as before the insert-operation took place.

We only look at the case where the insert happened into the right sub-tree of v. The other case is symmetric.

AVL-trees: Insert

We have the following situation:

The right sub-tree of v has increased its height which results in a balance of -2 at v.

Before the insertion the height of T_{v} was $h+1$.

Case 1: balance[right[v]] = -1

We do a left rotation at v

Now, the subtree has height $h+1$ as before the insertion. Hence, we do not need to continue.

Case 2: balance[right $[v]]=1$

AVL-trees: Delete

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- Initially, the node c-the new root in the sub-tree that has changed-is either a dummy leaf or a node with two dummy leafs as children.

Case 1

Case 2

In both cases bal $[c]=0$.

- Call AVL-fix-up-delete (v) to restore the balance-condition.

AVL-trees: Delete

Invariant at the beginning AVL-fix-up-delete (v) :

1. The balance constraints holds at all descendants of v.
2. A node has been deleted from T_{c}, where c is either the right or left child of v.
3. T_{C} has decreased its height by one.
4. The balance at the node c fulfills balance $[c]=0$. This holds because if the balance of c is in $\{-1,1\}$, then T_{c} did not change its height, and the whole procedure would have been aborted in the previous step.

AVL-trees: Delete

```
Algorithm 13 AVL-fix-up-delete(v)
    1: if balance[v] }{{-2,2} then DoRotationDelete(v)
    2: if balance[v] }\in{-1,1}\mathrm{ return;
    3: AVL-fix-up-delete(parent[v]);
```

We will show that the above procedure is correct. However, for the case of a delete there may be a logarithmic number of rotations.

AVL-trees: Delete

```
Algorithm 14 DoRotationDelete(v)
    1: if balance[v]= -2 then // deletion in left sub-tree
    2: if balance[right[v]] }\in{0,-1} the
    3: LeftRotate(v);
    4: else
        DoubleLeftRotate(v);
    6: else // deletion in right sub-tree
    7: if balance[left[v]]={0,1} then
    8: RightRotate(v);
    9: else
10: DoubleRightRotate(v);
```

 Note that the case distinction on the second level (bal[right[v]]:
 and bal[left[\(v]]\)) is not done w.r.t. the child \(c\) for which the sub-
 , tree \(T_{c}\) has changed. This is different to AVL-fix-up-insert.

AVL-trees: Delete

It is clear that the invariant for the fix-up routine hold as long as no rotations have been done.

We show that after doing a rotation at v :

- v fulfills the balance condition.
- All children of v still fulfill the balance condition.
- If now balance $[v] \in\{-1,1\}$ we can stop as the height of T_{v} is the same as before the deletion.

We only look at the case where the deleted node was in the right sub-tree of v. The other case is symmetric.

AVL-trees: Delete

We have the following situation:

The right sub-tree of v has decreased its height which results in a balance of 2 at v.

Before the deletion the height of T_{v} was $h+2$.

Case 1: balance $[\operatorname{left}[v]] \in\{0,1\}$

If the middle subtree has height h the whole tree has height $h+2$ as before the deletion. The iteration stops as the balance at the root is non-zero.

If the middle subtree has height $h-1$ the whole tree has decreased its height from $h+2$ to $h+1$. We do continue the fix-up procedure as the balance at the root is zero.

Case 2: balance $[\operatorname{left}[v]]=-1$

Sub-tree has height $h+1$, i.e., it has shrunk. The balance at y is zero. We continue the iteration.

