team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	_	1	6	1
Philadelphia	80	79	1	_	0	2
New York	78	78	6	0	_	0
Montreal	77	82	1	2	0	_

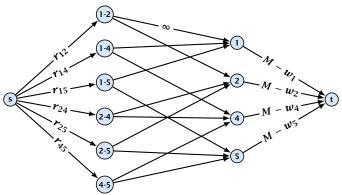
Which team can end the season with most wins?

- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

Formal definition of the problem:

- ▶ Given a set S of teams, and one specific team $z \in S$.
- ▶ Team x has already won w_x games.
- ► Team x still has to play team y, r_{xy} times.
- Does team z still have a chance to finish with the most number of wins.

Flow network for z = 3. M is number of wins Team 3 can still obtain.



Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

$$w(T) := \sum_{i \in T} w_i, \qquad r(T) := \sum_{i,j \in T, i < j} r_{ij}$$
 wins of teams in T

If $\frac{w(T)+r(T)}{|T|}>M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} r_{ij}$.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} r_{i,j}$.

Proof (←)

► Consider the mincut *A* in the flow network. Let *T* be the set of team-nodes in *A*.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} r_{ij}$.

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- ▶ If for a node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} r_{i,j}$.

Proof (←)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\})$$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} r_{ij}$.

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(S, V \setminus S)$$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} r_{ij}$.

- ► Consider the mincut *A* in the flow network. Let *T* be the set of team-nodes in *A*.
- ▶ If for a node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(S, V \setminus S)$$

 $\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} r_{ij}$.

- ► Consider the mincut *A* in the flow network. Let *T* be the set of team-nodes in *A*.
- ▶ If for a node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(S, V \setminus S)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,i \in S \setminus \{z\}, i < i} r_{ij}$.

Proof (⇐)

- ► Consider the mincut *A* in the flow network. Let *T* be the set of team-nodes in *A*.
- ▶ If for a node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(S, V \setminus S)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

▶ This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

- Suppose we have a flow that saturates all source edges.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_X$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- ▶ Hence, team z is not eliminated.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_X$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- ▶ Hence, team z is not eliminated.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- ► The flow leaving the team-node *x* can be interpreted as the additional number of wins that team *x* will obtain.
- ▶ This is less than $M w_x$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- ▶ Hence, team z is not eliminated.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- ▶ The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_{\chi}$ because of capacity constraints.
- ► Hence, we found a set of results for the remaining games, such that no team obtains more than *M* wins in total.
- ▶ Hence, team z is not eliminated.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- ▶ The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_X$ because of capacity constraints.
- ► Hence, we found a set of results for the remaining games, such that no team obtains more than *M* wins in total.
- ▶ Hence, team z is not eliminated.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- ▶ The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_X$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team z is not eliminated.

