We need to find paths efficiently.

- We need to find paths efficiently.
- > We want to guarantee a small number of iterations.

- We need to find paths efficiently.
- > We want to guarantee a small number of iterations.

Several possibilities:

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

12.3 Capacity Scaling

Intuition:

Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.

Intuition:

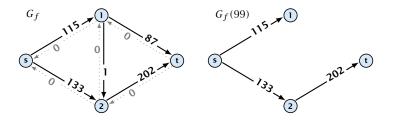
- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .



12.3 Capacity Scaling

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 462/604

Algorithm 45 maxflow(G, s, t, c) 1: foreach $e \in E$ do $f_e \leftarrow 0$; 2: $\Delta \leftarrow 2^{\lceil \log_2 C \rceil}$ 3: while $\Delta \ge 1$ do 4: $G_f(\Delta) \leftarrow \Delta$ -residual graph 5: **while** there is augmenting path P in $G_f(\Delta)$ **do** 6: $f \leftarrow \text{augment}(f, c, P)$ 7: $\text{update}(G_f(\Delta))$ 8: $\Delta \leftarrow \Delta/2$ 9: return f

12.3 Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

• because of integrality we have $G_f(1) = G_f$

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

12.3 Capacity Scaling

◆ □ → < ≥ → < ≥ → 465/604

Lemma 1

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 1

There are $\lceil \log C \rceil$ iterations over Δ . **Proof:** obvious.

Lemma 2

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

Lemma 1

There are $\lceil \log C \rceil$ iterations over Δ . **Proof:** obvious.

Lemma 2

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

• There must exist an *s*-*t* cut in $G_f(\Delta)$ of zero capacity.

Lemma 1

There are $\lceil \log C \rceil$ iterations over Δ . **Proof:** obvious.

Lemma 2

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

- There must exist an *s*-*t* cut in $G_f(\Delta)$ of zero capacity.
- in G_f this cut can have capacity at most $2m\Delta$.

Lemma 1

There are $\lceil \log C \rceil$ iterations over Δ . **Proof:** obvious.

Lemma 2

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

- There must exist an *s*-*t* cut in $G_f(\Delta)$ of zero capacity.
- in G_f this cut can have capacity at most $2m\Delta$.
- This gives me an upper bound on the flow that I can still add.

12.3 Capacity Scaling

▲ ● < ● < ● <
▲ 466/604

Lemma 3

There are at most 2m augmentations per scaling-phase.

12.3 Capacity Scaling

▲ ● ◆ ● ◆ ● ◆
▲ 466/604

Lemma 3

There are at most 2m augmentations per scaling-phase.

Proof:

• Let *f* be the flow at the end of the previous phase.

12.3 Capacity Scaling

▲ ● ◆ ● ◆ ● ◆
▲ 466/604

Lemma 3

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$

Lemma 3

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Lemma 3

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Theorem 4

We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $O(m^2 \log C)$.

