First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \leq \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \leq \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \leq \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

Suppose we guess $T(n) \le dn \log n$ for a constant *d*.

6.1 Guessing+Induction

◆ 母 → ▲ 臣 → ▲ 臣 → 46/604

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

6.1 Guessing+Induction

◆ 母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 46/604

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

6.1 Guessing+Induction

◆ @ ▶ ◆ 臣 ▶ **◆** 臣 ▶ 46/604

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$

6.1 Guessing+Induction

◆ 母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 46/604

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$

6.1 Guessing+Induction

▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●
 ▲ ●

,

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$\le dn\log n$$

if we choose $d \ge c$.

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$\le dn\log n$$

if we choose $d \ge c$.

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \leq dn \log n$.

 $T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

▶ base case (2 ≤ n < 16):</p>

$$T(n) \leq \left\{ egin{array}{cc} 2T(rac{n}{2}) + cn & n \geq 16 \\ b & ext{otw.} \end{array}
ight.$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

base case $(2 \le n < 16)$: true if we choose $d \ge b$.

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$
$$\le dn\log n$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$. We prove it for n:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$
$$\le dn\log n$$

Hence, statement is true if we choose $d \ge c$.

Why did we change the recurrence by getting rid of the ceiling?

6.1 Guessing+Induction

▲ **個** ▶ ▲ ≣ ▶ ▲ ≣ ▶ 48/604

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

$$T(n) \le \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 16\\ b & \text{otherwise} \end{cases}$$

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

$$T(n) \le \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 16\\ b & \text{otherwise} \end{cases}$$

Note that we can do this as for constant-sized inputs the running time is always some constant (*b* in the above case).

We also make a guess of $T(n) \leq dn \log n$ and get

T(n)

6.1 Guessing+Induction

◆ @ ▶ ◆ 臣 ▶ **◆** 臣 ▶ 49/604

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

6.1 Guessing+Induction

▲ **個** ▶ ▲ 볼 ▶ ▲ 볼 ▶ 49/604

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1$$

6.1 Guessing+Induction

◆ @ ▶ ◆ 臣 ▶ **◆** 臣 ▶ 49/604

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1\right\rceil \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

6.1 Guessing+Induction

◆ 母 ト ◆ ヨ ト ◆ ヨ ト 49/604

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\boxed{\left\lceil \frac{n}{2} \right\rceil \leq \frac{n}{2} + 1} \leq 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\boxed{\frac{n}{2} + 1 \leq \frac{9}{16}n}$$

6.1 Guessing+Induction

◆ @ ▶ ◆ 臣 ▶ **◆** 臣 ▶ 49/604

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\boxed{\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1} \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\boxed{\frac{n}{2} + 1 \le \frac{9}{16}n} \le dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\boxed{\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1} \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\boxed{\left\lceil \frac{n}{2} + 1 \le \frac{9}{16}n\right\rceil} \le dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

 $\log \frac{9}{16}n = \log n + (\log 9 - 4)$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1 \right\rceil \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$
$$\frac{n}{2} + 1 \le \frac{9}{16}n \right\rceil \le dn \log\left(\frac{9}{16}n\right) + 2d \log n + cn$$
$$\frac{9}{16}n = \log n + (\log 9 - 4) = dn \log n + (\log 9 - 4)dn + 2d \log n + cn$$

log

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\boxed{\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1} \leq 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\boxed{\left\lceil\frac{n}{2} + 1 \leq \frac{9}{16}n\right\rceil} \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\boxed{\log\frac{9}{16}n = \log n + (\log 9 - 4)} = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\boxed{\log n \leq \frac{n}{4}}$$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\left\lceil \frac{n}{2} \right\rceil \leq \frac{n}{2} + 1 \leq 2\left(d(n/2+1)\log(n/2+1)\right) + cn$$

$$\frac{n}{2} + 1 \leq \frac{9}{16}n \leq dn \log\left(\frac{9}{16}n\right) + 2d \log n + cn$$

$$\log \frac{9}{16}n = \log n + (\log 9 - 4) = dn \log n + (\log 9 - 4)dn + 2d \log n + cn$$

$$\log n \leq \frac{n}{4} \leq dn \log n + (\log 9 - 3.5)dn + cn$$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2(d(n/2+1)\log(n/2+1)) + cn$$

$$\frac{n}{2} + 1 \leq \frac{9}{16}n \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log\frac{9}{16}n = \log n + (\log 9 - 4) = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\log n \leq \frac{n}{4} \leq dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2\left(d(n/2+1)\log(n/2+1)\right) + cn$$

$$\frac{n}{2} + 1 \leq \frac{9}{16}n \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log\frac{9}{16}n = \log n + (\log 9 - 4) = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\log n \leq \frac{n}{4} \leq dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

$$\leq dn\log n$$

for a suitable choice of d.

EADS © Ernst Mayr, Harald Räcke