Parallel Algorithms

Due Date: November 6, 2012 before class!

Problem 1 (10 Points)

Consider an array with n distinct elements. The task is to search the array for a particular element x. We know that a sequential algorithm will always have a worst-case running time of n steps. Derive an efficient parallel algorithm for this task on an EREW (exclusive read / exclusive write) PRAM with $p \leq n$ processors.

Problem 2 (10 Points)

Given a boolean function F, show that

$$
\operatorname{size}(F) \leq 2^{\operatorname{depth}(F)}
$$

where $\operatorname{size}(F)$ denotes the size of a minimal circuit with outdegree 1 which computes F, and depth (F) its depth, respectively.

Problem 3 (10 Points)

Every d-ary tree $G=(V, E)$ contains a vertex v such that the size of the subtree with root v is at least $\frac{1}{d+1}|V|$ and at most $\frac{d}{d+1}|V|+1$.

Problem 4 (10 Points)

Given a boolean function F, show that

$$
\operatorname{depth}(F) \leq \alpha \log \operatorname{size}(F)
$$

where $\alpha=2 \cdot \log (3 / 2)^{-1}$.
Hint: Use Problem 3.

