Parallel Algorithms

Due Date: November 13, 2012 before class!

Problem 1 (10 Points)

The transitive closure of a directed graph $G=(V, E)$ is the graph $G^{*}=\left(V, E^{*}\right)$, where E^{*} consists of all pairs (i, j) such that either $i=j$ or there exists a directed path from i to j.
The input graph G is given by its incidence matrix A, and the task is to compute the incidence matrix A^{*} of its transitive closure. Describe a boolean circuit to compute A^{*}. Assume that A is an $n \times n$ matrix and that $n=2^{p}$.

Problem 2 (10 Points)

Given $n=2^{k}$ and two n-bit numbers, the task is to add these numbers. Suppose every processor adds only bit-wise.
(i) Describe an approach on how to compute the behavior of the i th carry bit in relation to the $(i-1)$ st carry bit.
(ii) Describe how to compute this for all n carry bits in only $O(\log n)$ bit steps.

Problem 3 (10 Points)

Using Problem 2, describe a parallel algorithm for adding two n-bit numbers in $O(\log n)$ steps.

Problem 4 (10 Points)

Derive an algorithm for adding $k n$-bit numbers using $O(\log k+\log n)$ steps. You may use $k \cdot n$ processors, since the problem has that many inputs.
Hint: First show that the addition of three n-bit numbers can be reduced to the addition of two $(n+1)$-bit numbers in one step.

