Parallel Algorithms

Due Date: November 27, 2012 before class!

Problem 1 (10 Points)

Prove a lower bound on the number of time steps needed for sorting on a 2-dimensional rectangular mesh with r rows and c columns, where $c \leq r^{2}$.

Problem 2 (10 Points)

Show how to sort into row-major or column-major order on an $n \times n$ mesh in $4 n+o(n)$ steps.

Problem 3 (10 Points)

Elaborate an algorithm for sorting n^{3} items on a $n \times n \times n 3$-dimensional mesh. Adapt the $3 n$ sorting algorithm seen in the lecture to do so. Use a $z y x$-order scheme with column-major order within each plane, i.e., at the end, the item in processor (i, j, k) will be at least as large as the item in processor $\left(i^{\prime}, j^{\prime}, k^{\prime}\right)$ whenever $k^{\prime}\left|j^{\prime}\right| i^{\prime}$ is lexicographically smaller than $k|j| i$.
How many steps does your algorithm take?

Problem 4 (10 Points)

Show that sorting the rows and then the columns of a mesh leaves the rows in sorted order.

