Parallel Algorithms

Due Date: December 4, 2012 before class!

Problem 1 (10 Points)

Show that the maximum queue size is at most $\frac{2}{3} \sqrt{N}$ for the basic greedy algorithm for the routing problem.

Problem 2 (10 Points)

Extend the Lemma about the Chernov bound to show that

$$
\operatorname{Prob}(X \leq \gamma P) \leq e^{\left(P-\gamma P-(n-\gamma P) \ln \left(\frac{n-\gamma P}{n-P}\right)\right) \frac{P}{n-P}}
$$

for $\gamma<1$.
Hint: Reverse the roles of $X_{i}=0$ and $X_{i}=1$.

Problem 3 (10 Points)

Show that with probability close to 1 , the basic greedy algorithm solves a random routing problem in $2 \sqrt{N}-\Omega\left(N^{1 / 4}\right)$ steps.
Hint: You will have to show that, with probability close to 1 , no packet will have to travel more than $2 \sqrt{N}-\Omega\left(N^{1 / 4}\right)$ distance.

Problem 4 (10 Points)

Show Hall's marriage theorem:
Let $G=(U, V, E)$ be a bipartite graph with $|U|=n$ and $|V|=m$ and $m \leq n$. Then there exists a matching of cardinality m if and only if for every subset $V^{\prime} \subseteq V$ it holds that $\left|V^{\prime}\right| \leq|N(V)|$, where $N(V)$ denotes the set of neighboring vertices to vertices in V.

