Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Parallel Algorithms

Due Date: December 18, 2012 before class!

Problem 1 (10 Points)

Prove that any bisection of the $n \times n$ mesh of trees contains at least n edges. Hint: Use the same argument that was used in the lecture for the bisection width of an r-dimensional mesh.

Problem 2 (10 Points)

The $n \times n$ reduced mesh of trees consists of an $n \times n$ array with complete binary trees added to the $(i \log n + 1)$ st row and column for each $i, 0 \le i < \frac{n}{\log n}$. How many processors are contained in a reduced mesh of trees?

Problem 3 (10 Points)

Show that if an $n \times n$ mesh of trees is used to route packets to and from leaf processors, then it can take $\Omega(\sqrt{m})$ steps to route m packets even if no two packet destinations are the same.

Problem 4 (10 Points)

Show that the $n \times n$ mesh of trees can simulate any *n*-node network with an $O(\log n)$ -factor delay.