Parallel Algorithms

Due Date: January 15, 2013 before class!

Problem 1 (10 Points)

How many disjoint s-dimensional hypercubes are contained in an r-dimensional cube for $r \geq s$? (For example, a two-dimensional cube contains two one-dimensional cubes.)

Problem 2 (10 Points)

Given an n-dimensional hypercube, show that the removal of the nodes with size $\left\lceil\frac{n}{2}\right\rceil$ and size $\left\lfloor\frac{n}{2}\right\rfloor$ results in a bisection containing $\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$ nodes.

Problem 3 (10 Points)

Let u and v be nodes of the r-dimensional hypercube, and let $u_{1}, u_{2}, \ldots, u_{r}$ and $v_{1}, v_{2}, \ldots, v_{r}$ denote their neighbors, respectively. Let π be any permutation on $\{1,2, \ldots, r\}$. Show that there is an automorphism of the hypercube σ such that $\sigma(u)=v$ and $\sigma\left(u_{i}\right)=v_{\pi(i)}$ for $1 \leq i \leq r$.
Hint: An automorphism of a graph is a one-to-one mapping of the nodes to the nodes such that edges are mapped to edges.

Problem 4 (10 Points)

Show that any N-node two-dimensional array is a subgraph of the $(\lceil\log N\rceil+1)$-dimensional hypercube.

