Parallel Algorithms

Due Date: January 22, 2013 before class!

Problem 1 (10 Points)

Given an $r \times c$ array, show that the dimensions b_{j} and b_{j+2} for $1 \leq j \leq c-3$ (and a_{i} and a_{i+2} for $1 \leq i \leq r-3$, resp.) - as seen in Figure 3-7 on page 402 in Leighton's book - are different.

Problem 2 (10 Points)

(a) Show that there are $\binom{L-1}{L_{0}-1}$ ways to choose the length $l_{1}, l_{2}, \ldots, l_{L_{0}}$ of the stagnant paths in the proof of Theorem 3.4 in Leighton's book (the Theorem about the flip-bit algorithm) so that

$$
l_{1}+l_{2}+\cdots+l_{L_{0}}=L
$$

and $l_{i} \geq 1$ for $1 \leq i \leq L_{0}$.
Hint: Show that there is a bijective mapping between $\left\{l_{1}, l_{2}, \ldots, l_{L_{0}}\right\}$ and ($L-1$)-bit binary strings with $L_{0}-1$ 1s.
(b) Show that

$$
\binom{L-1}{L_{0}-1} \leq\binom{ L}{L_{0}}
$$

for any $1 \leq L_{0} \leq L$.

Problem 3 (10 Points)

Show that an inorder labeling of an $(N-1)$-node complete binary tree induces an embedding in the N-node hypercube with dilation 2.

Problem 4 (10 Points)

Regarding the flip-bit algorithm, explain in detail why there is at most one way to choose the flip bits in nodes of T that are contained in traces.

