
Praktikum Diskrete Optimierung (Teil 5) 13.05.2013 1

1 Weighted matchings in bipartite graphs

Let G = (V,E) be an undirected graph with integer edge weights w : E → Z. Amatching

in G is a subset M ⊆ E of edges such that no two edges in M share a common vertex.
A matching M is called matching of maximal cardinality if there is no matching M ′ in
G with |M ′| > |M |. The weight w(M) of a matching M is the sum of the weights of all
edges in M . The weight w(p) of an augmenting path p in M is the sum of the weights
of all edges in p \M minus the sum of the weights of all edges in p ∩M . The weight of
the following augmenting path is then 5 + 6 + 7− 3− 2 = 13.

5 3 26 7

With this defintion, the weight of a matching changes by w(p) when inverting an
augmenting path p.

We have already seen the Hopcraft-Karp algorithm, which efficiently computes mat-
chings of maximal cardinality in bipartite graphs in time O(

√

|V ||E|). But often there
are different matchings of maximal cardinality, and we do not just want to find any of
those, but one with minimal or maximal weight. In the following, we consider the case
of finding a matching of maximal cardinality and minimal weight.

1.1 Incremental computation

The basic idea of solving this problem is to compute a matching Mk, which contains
exactly k edges and has minimal weight among all those with k edges, for every k =
1, 2, . . . consecutively. The following theorem shows how Mk+1 can be computed from
Mk.

Theorem 1 Let Mk be a matching in G with k edges, which has minimal weight among

all matchings with exactly k edges. Let p be an augmenting path in G with respect to

Mk, which has minimal weight among all augmenting paths with respect to Mk. Then

Mk+1 := Mk ⊕ p, i.e. the resulting matching after inverting p in Mk, contains exactly

k + 1 edges and has minimal weight among all matching in G with exactly k + 1 edges.

Proof: Let M ′ be an arbitrary matching with k + 1 edges, which has minimal weight
among all those with k + 1 edges. Consider the graph H = (V,Mk ⊕ M ′) which only
contains edges included in either Mk or M ′ (but not in both). All vertices in H have a
degree of at most 2, and the connected components of H can only be of the following
form:

1. alternating (w.r.t. Mk and M ′) paths or cycles with an even number of edges

2. augmenting paths w.r.t. Mk (i.e. by inverting such a path, |Mk| increases by one,
and |M ′| decreases by one, respectively)

3. augmenting paths w.r.t. M ′ (i.e. by inverting such a path |Mk| decreases by one,
and M ′ increases by one, respectively)

Praktikum Diskrete Optimierung (Teil 5) 13.05.2013 2

The weight of the edges from Mk on an alternating path or a cycle of even length
must be equal to the weight of the edges from M ′, otherwise Mk or M ′ could be made
cheaper (contradiction). Furthermore, the number of augmenting paths w.r.t Mk (2.)
must be exactly one more than the number of augmenting paths w.r.t. M ′ (3.).

If H contains no augmenting path w.r.t M ′ (3.), we are done: H contains exactly one
augmenting path p w.r.t. Mk and by inverting p (or every other augmenting path with
minimal weight) we obtain from Mk a matching with k + 1 edges and minimal weight.

If H contains an augmenting path w.r.t. M ′ (3.), for every pair of an augmenting
path p w.r.t. Mk and an augmenting path q w.r.t. M ′ the following must hold: the
sum of the edge weights in (p ∪ q) ∩ Mk is equal to the sum of the edge weights in
(p ∪ q) ∩ M ′. (Otherwise either Mk or M ′ can be made cheaper by inverting p and q,
a contradiction.) Hence, all augmenting paths w.r.t. Mk must have the same weight
c ∈ Z, and all augmenting paths w.r.t. M ′ must have the same weight −c. In this
case, it immediately follows that a matching with k + 1 edges and minimal weight can
be computed from Mk by inverting a single augmenting path w.r.t. Mk with weight c,
which can also be done with an arbitrary augmenting path with minimal weight. ⊓⊔

The algorithm for finding a matching of maximal cardinality and minimal weight is
then the following:

• set M := ∅

• while (there exists augmenting path w.r.t. M) do
search for an augmenting path p with minimal weight;
invert p and increase M by one edge;

od

• output M as matching of maximal cardinality and minimal weight

1.2 Computation of an augmenting path with minimal weight

What is still left is how to find an augmenting path with minimal weight in a bipartite
graph. So, we want to search all the alternating paths, which go from a free vertex in V1

to a free vertex in V2, for one with minimal weight. We observe that each of those paths
visits edges in E \M only in the direction from V1 to V2. and edges in M only in the
direction from V2 to V1. Thus, we may consider these edges as directed arcs. Furthermore
we can assign costs to these arcs such that the weight of an augmenting path is equal to
the sum of the costs on this path: every arc e ∈ E \M is assigned the cost c(e) = w(e)
and every arc e ∈ M is assigned the cost c(e) = −w(e). Now, if we add two new vertices
s and t, connect s to all free vertices in V1 via arcs with c(e) = 0, and connect all free
certices in V2 to t via arcs with c(e) = 0, we can find an augmenting path with minimal
weight by finding a shortest path from s to t in this extended graph G′. We still need
to check how to find such a shortest path from s to t in G′. (There are some examples
of such a construction in section 1.3.)

Praktikum Diskrete Optimierung (Teil 5) 13.05.2013 3

1.2.1 Negative weights and recalibration

Because the arcs in G′ can have negative weights we may not be able to use Dijkstra’s
algorithm. We can use the Bellman-Ford algorithm instead, which computes shortest
paths in graph with arbitrary weights (but without cycles of negative length) in time
O(|V | · |E|). The overall running time for finding a matching with maximal cardinality
and minimal weight is O(|V |2|E|), because we have to find |V |/2 augmenting paths in
the worst case.

But by using a clever “recalibration” trick we can change the costs of the arcs to
positive values and then use Dijkstra’s algorithm after all. Because Dijkstra’s algorithm
has a worst case running time of O(|E|+ |V | log |V |) by using an implementation with
Fibonacci heaps, this yields an overall running time of O(|V |2 log |V | + |V | · |E|) for
finding a matching of maximal cardinality and minimal weight (among all these).

So, how does such a recalibration work? First, consider an arbitrary function F : V →
Z and replace the costs c(u, v) of each edge (u, v) inG′ by c′(u, v) := c(u, v)+F (u)−F (v).
The length of a path from s to t then changes by exactly F (s)−F (t). Because this change
does not depend on the path, a shortest path from s to t remains a shortest path even
after modifying the costs. If we find a function F , which turns all the values c′(u, v)
positive, then we can find an augmenting path with minimal weight by using Dijkstra’s
algorithm.

1.2.2 Choice of the recalibration function

We need a function F such that all c′(e) are nonnegative after recalibration. One pos-
sibility is to choose F (u) equal to the length of a shortest path from s to u: this way,
F (v) ≤ F (u) + c(u, v) holds for every arc (u, v), yielding c′(u, v) ≥ 0 directly. The
problem with this approach is that we want to find the shortest paths by using the
recalibration. The solution to this dilemma is to use the information of the search for
an augmenting path with minimal weight from the step before!

If, at the beginning, i.e. before finding the first augmenting path, there exist arcs
with negative costs, then we just add a sufficiently large number to all the arc costs to
make them positive. (We can do that, because the weights of all matchings of maximal
cardinality changes in the same way.) Thus, finding the first augmenting path can be
done using Dijkstra’s algorithm. The graph G′ and the costs of the arcs are set as
mentioned above. Then Dijkstra’s algorithm is run until the lengths of the shortest
paths to all vertices in G′ are computed (single source problem).

By c(u, v) we denote the current cost of the arc (u, v) in G′ and by d(v) we denote
the calculated length of a shortest path from s to v. Furthermore, let p be the shortest
path in G′ from s to t, given by Dijkstra’s algorithm. Then the matching algorithm
executes the following operations:

• The augmenting path in G corresponding to p is inverted.

• The first and last arcs of p are deleted from G′.

• For all arcs (u, v) in G′ not included in p, the costs c(u, v) are replaced by c(u, v)+
d(u)− d(v) ≥ 0.

Praktikum Diskrete Optimierung (Teil 5) 13.05.2013 4

• All remaining arcs (u, v) of p in G′ (i.e. all arcs apart from the first and last one)
are inverted (i.e. (u, v) is replaced by (v, u)) and are assigned new costs c(v, u) = 0.

It is easy to see that with these modifications a graphG′ is constructed which can be used
to find the next augmenting path with minimal weight by using Dijkstra’s algorithm.
This process (the computation of shortest paths in G′ including a shortest path p from
s to t, inverting the augmenting path with minimal weight corresponding to p in G,
modifying G′ as mentioned above) is repeated until there are no more paths from s to t
in G′. Then the current matching in G is the wanted matching of maximal cardinality
with minimal weight among all those such matchings.

Remark: Because the presented algorithm works in the presence of negative edge
weights as well, it is easy to find a matching of maximal cardinality with maximal
(instead of minimal) weight among all those matchings as well. To this end, it suffices
to just negate all edge weights before starting the algorithm.

Further information: This design of the algorithm for finding matchings of ma-
ximal cardinality with respectively minimal or maximal weight is based on the pa-
ges 81–85 from the script “Advanced Algorithms” of a lecture by Johan H̊astad.
This script is available as a PostScript file on the web on H̊astad’s homepage
http://www.nada.kth.se/∼johanh/.

Praktikum Diskrete Optimierung (Teil 5) 13.05.2013 5

1.3 Example execution of the algorithm

In the following we want to take a look at an example for the algorithm step by step.

15

6
13 14

4

10 1015

6
13 14

4

s

0

t

0

0 0 0

0

4

15 10

6
13 14

0 0

0

0

4

00

0

0 0 0

13 4 10

(1) Input graph G (2) Graph G′ (3) Shortest paths in G′

The input graph G is pictured in (1). The edge weights of G are all positive, such that
no modifications of the weights is necessary beforehand. The graph G′ is constructed
as mentioned in section 1.2 and is pictured in (2). After the shortest paths from s to
the other vertices in G′ are computed using Dijkstra’s algorithm, the distances of these
vertices from s are pictured in (3), and the shortest path p from s to t is pictured by a
dashed line. Inverting the corresponding augmenting path in G yields the matching M1

pictured in (4), which has minimal weight among all matchings with exactly one edge.

15

6
13 14

4

10 0

0
0

2

2
4

9 6

00

02

2

0

0

4

8

00

9 6

0

0 0 2

0 2 2

(4) Matching M1 in G (5) New graph G′ (6) Shortest paths in G′

By deleting the first and last edge of p, inverting the remaining edge of p and mo-

Praktikum Diskrete Optimierung (Teil 5) 13.05.2013 6

difying the weights, the old graph G′ in (3) results in a new graph G′ in (5). We execute
Dijkstra’s algorithm on this graph again; yielding the distances pictured in (6) as well as
a new shortest path p (pictured by a dashed line) from s to t. Inverting the correspon-
ding augmenting path in G yields in matching M2 pictured in (7), which has minimal
weight among all matchings with exactly two edges.

15

6
13 14

4

10

0 0

2

0

0

2

0

0

1

0

2

0

0

0 2

0

0

1

2 0 2

0 2 2

1

(7) Matching M2 in G (8) New graph G′ (9) Shortest paths in G′

Again, the new graph G′ is pictured in (8) and the result of the computation of the
shortest paths in G′ is pictured in (9). Inverting the augmenting path in G corresponding
to the dashed shortest path G′ finally yields the matching M3 in (10). There are no more
paths from s to t in the resulting graph G′. Hence, M3 has maximal cardinality and
minimal weight among all matchings of maximal cardinality in G, namely w(M3) = 29.

4

10

13 14
6

15

(10) Matching M3 in G

