
Praktikum Algorithmen-Entwurf (Teil 11) 13.01.2014 1

1 Edit Distance

The exact search of a query string in the text often is not the problem that we want
to solve in computational biology/bioinformatics, in context of large databases, and in
context of applications in general where there can be errors, inaccuracies, or uncertain-
ties in the text and the query string. More relevant would be, for example, to find the
best possible matching between the text and the query or to find a sequence of trans-
formations which transform the inaccurate into the desired text. These algorithms use
the principle of dynamic programming.

Let X and Y denote two strings consisting of m and n characters, respectively, that
is X = X[1 . . .m] and Y = Y [1 . . . n].

For two given texts X and Y we define a “distance” between X and Y as follows.
The edit distance between X and Y , edit(X, Y ), is the least number of primitive “edit”
operations which are needed to transform X into Y . During the transformation pro-
cedure we go over X from left to right and allow the following operations on the i-th
character X[i] (we consider Y to be empty at the beginning and is constructed from left
to right during this procedure):

• Copy: Append X[i] at the end of Y . Set i← i+ 1 after that. (This is interpreted
as a simple adoption of the character X[i].)

• Insert a: Append character a at the end of Y . i stays the same. (This is interpreted
as an insertion of a in front of X[i].)

• Delete: Character X[i] is skipped (and therefore not appended at the end of Y ).
Set i← i+ 1 after that. (This is interpreted as a deletion of X[i].)

• Change to a: Append character a at the end of Y . Set i← i+ 1 after that. (This
is interpreted as a change of X[i] to a.)

The edit distance edit(X, Y ) is then defined as the minimum number of Insert-, Delete-
and Change-operations (Copy-operations are not counted) of a sequence of edit opera-
tions consisting of these four types such that this sequence transforms X into Y .

It is easy to see that edit(X, Y ) is indeed a meaningful distance since it is a metric:

• edit(X, Y ) = edit(Y,X) (symmetry)

• edit(X, Y ) ≤ edit(X,Z) + edit(Z, Y ) (triangle inequality)

• edit(X, Y ) ≥ 0

• edit(X, Y ) = 0 if and only if X = Y .

Remark: Instead of this definition of the edit distance where we process the string X
from left to right we can use the equivalent definition where we ask how many characters
we have to insert into, change, or delete from X to obtain Y . For algorithm development
the first definition suits better.

Here is an example how to transform the string Praktikum into the string Program:



Praktikum Algorithmen-Entwurf (Teil 11) 13.01.2014 2

Operation X[i,m] Y
Praktikum

Copy raktikum P

Copy aktikum Pr

Change to o ktikum Pro

Change to g tikum Prog

Change to r ikum Progr

Change to a kum Progra

Delete um Progra

Delete m Progra

Copy Program

We conclude from this sequence of edit operations edit(Praktikum, Program) ≤
6. Naturally, there are many other operation sequences to transform Praktikum into
Program. In general, there can also be many different operation sequences which trans-
form X into Y and have the minimum number of Insert-, Delete- und Change-operations.

2 Computation using dynamic programming

Now we want to compute the edit distance between two given textsX and Y . We consider
the substrings X[1 . . . i], 0 ≤ i ≤ m, and Y [1 . . . j], 0 ≤ j ≤ n, and try to construct a ta-
ble EDIT containing all the solutions for the partial problems edit(X[1 . . .m], Y [1 . . . j]):

EDIT[i, j] = edit(X[1..i], Y [1..j]).

If we have constructed such a table, then the solution of the original problem can directly
be looked up at EDIT[m,n].

Some parts of the EDIT-table can simply be initialised: it is clear that EDIT[0, j] = j
for all j ≤ n, and EDIT[i, 0] = i for all i ≤ m. In the first case we have to construct Y
from the empty word which is done at best by using j Insert-operations, while in the
second case we have to construct the empty word Y from X which is done at best by
using i Delete-operations.

If the last operation which transforms X[1 . . . i] into Y [1 . . . j] is an Insert-operation,
then we have EDIT[i, j] = EDIT[i, j − 1] + 1. If the last operation is a Delete-operation,
then we have EDIT[i, j] = EDIT[i−1, j]+1. If the last operation is a Copy-operation which
can only be the case if X[i] = Y [j], then we have EDIT[i, j] = EDIT[i− 1, j − 1]. And if
the last operation is a Change-operation, then we have EDIT[i, j] = EDIT[i−1, j−1]+1.

We can construct the table EDIT[i, j] by using the equality

EDIT[i, j] = min(EDIT[i, j − 1] + 1, EDIT[i− 1, j] + 1, EDIT[i− 1, j − 1] + δ(X[i], Y [j])),

where δ(a, b) = 1 if a 6= b, und δ(a, b) = 0 if a = b (since the Copy-operation doesn’t
contribute to the distance).

A naive program having two nested loops has running time Θ(mn), but also uses
Θ(mn) memory for the complete table. However, it is easy to see that the memory usage
can be reduced to O(min(m,n)) if we are only interested in finding EDIT[m,n]. (How?)



Praktikum Algorithmen-Entwurf (Teil 11) 13.01.2014 3

This algorithm is a typical example for dynamic programming: the solution of the
problem is assembled from already computed and saved solutions for partial problems
(of the same kind).

2.1 Computation as a shortest path in a graph

An alternative view on the method of computing the edit distance of the last section
is obtained by reducing this problem to a graph problem. Let (i, j) for 0 ≤ i ≤ m and
0 ≤ j ≤ n be nodes of a graph G. The node (i, j) represents the pair of substrings
X[1 . . . i] and Y [1 . . . j].

The (directed) edges of G should be chosen in such a way that each path from (i, j) to
(i′, j′), i ≤ i′ and j ≤ j′, corresponds to a sequence of edit operations which transforms
X[i + 1 . . . i′] into Y [j + 1 . . . j′]. (Remind that X[a . . . b] is, by convention, the empty
string if a > b.)

The weight of the path (sum of the edge weights) should correspond to the number
of Insert-, Delete- und Change-operations on this path. Correspondingly, all edges (i−
1, j) → (i, j) have weight 1, all edges (i, j − 1) → (i, j) have weight 1, and all edges
(i − 1, j − 1) → (i, j) have weight δ(X[i], Y [j]). The edit distance between strings X
and Y , which is as defined above the minimum number of Insert-, Delete- und Change-
operationen of a sequence of edit operations transforming X into Y , can be computed
as the length of the shortest path from (0, 0) to (m,n) in G. A path from (0, 0) to (m,n)
corresponds to a processing of the string from left to right where at each character X[i]
one or more edit operations are executed.

The graph G obviously is acyclic such that this computation can be conducted
in linear time with respect to the size of G (by using topological sorting, see Volker
Turau. Algorithmische Graphentheorie. Addison-Wesley, Bonn, 1996. S. 250–254.) Since
the graph has Θ(mn) nodes and edges, both the running time and memory usage to
compute the edit distance using this method are in Θ(mn). Alternatively, the algorithm
of Dijkstra can be used to find the shortest path from (0, 0) to (m,n) (which results in
a worse upper bound for the running time).

One advantage of this solution is that an optimal sequence of operations transforming
X into Y can easily be reconstructed; simply follow the path from (0, 0) to (m,n). It
is also possible to modify the edge weights such that they reflect certain costs for the
corresponding operations. Both generalizations can also easily be incorporated into a
solution using dynamic programming. Here we have to be careful that each table entry
EDIT[i, j] can be computed in constant time.


