Baseball Elimination

team	wins	losses	remaining games			
\boldsymbol{i}	$\boldsymbol{w}_{\boldsymbol{i}}$	$\boldsymbol{\ell}_{\boldsymbol{i}}$	Atl	Phi	$\boldsymbol{N} \boldsymbol{Y}$	Mon
Atlanta	83	71	-	1	6	1
Philadelphia	80	79	1	-	0	2
New York	78	78	6	0	-	0
Montreal	77	82	1	2	0	-

Which team can end the season with most wins?

- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

Baseball Elimination

Formal definition of the problem:

- Given a set S of teams, and one specific team $z \in S$.
- Team x has already won w_{x} games.
- Team x still has to play team $y, r_{x y}$ times.
- Does team z still have a chance to finish with the most number of wins.

Baseball Elimination

Flow network for $z=3$. M is number of wins Team 3 can still obtain.

Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

If $\frac{w(T)+r(T)}{|T|}>M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

Theorem 1

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Theorem 1
A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.

Theorem 1

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.

Theorem 1

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
r(S \backslash\{z\})
$$

Theorem 1

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
r(S \backslash\{z\})>\operatorname{cap}(A, V \backslash A)
$$

Theorem 1

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
\begin{aligned}
r(S \backslash\{z\}) & >\operatorname{cap}(A, V \backslash A) \\
& \geq \sum_{i<j: i \notin T \vee j \notin T} r_{i j}+\sum_{i \in T}\left(M-w_{i}\right)
\end{aligned}
$$

Theorem 1

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
\begin{aligned}
r(S \backslash\{z\}) & >\operatorname{cap}(A, V \backslash A) \\
& \geq \sum_{i<j: i \notin T \vee j \notin T} r_{i j}+\sum_{i \in T}\left(M-w_{i}\right) \\
& \geq r(S \backslash\{z\})-r(T)+|T| M-w(T)
\end{aligned}
$$

Theorem 1

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
\begin{aligned}
r(S \backslash\{z\}) & >\operatorname{cap}(A, V \backslash A) \\
& \geq \sum_{i<j: i \notin T \vee j \notin T} r_{i j}+\sum_{i \in T}\left(M-w_{i}\right) \\
& \geq r(S \backslash\{z\})-r(T)+|T| M-w(T)
\end{aligned}
$$

- This gives $M<(w(T)+r(T)) /|T|$, i.e., z is eliminated.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M-w_{x}$ because of capacity constraints.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M-w_{x}$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M-w_{x}$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team z is not eliminated.

