7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)

```
♥
-∞→5→8→10→12→14→18→23→26↔28↔35↔43↔∞
```

EADS © Ernst Mayr, Harald Räcke

205

7.6 Skip Lists

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) $(k + 1 \text{ lists } L_0, \ldots, L_k)$

- Find the largest item in list L_k that is smaller than x. At most |L_k| + 2 steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left[\frac{|L_{k-1}|}{|L_{k}|+1}\right] + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left[\frac{|L_{k-2}|}{|L_{k-1}|+1}\right] + 2$ steps.
- ▶ ...

• At most
$$|L_k| + \sum_{i=1}^k \frac{L_{i-1}}{L_i} + 3(k+1)$$
 steps.

החוחר	EADS	
	© Ernst Mayr, Harald	Räcke

7.6 Skip Lists

207

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

	7.6 Skip Lists	
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke		206

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$
$$= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}$$
$$= (k+1)n^{\frac{1}{k+1}} .$$

Choosing $k = \Theta(\log n)$ gives a logarithmic running time.

EADS © Ernst Mayr, Harald Räcke 7.6 Skip Lists

7.6 Skip Lists

How to do insert and delete?

If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

EADS © Ernst Mayr, Harald Räcke

7.6 Skip Lists

7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- ► Flip a coin until it shows head, and record the number t ∈ {1,2,...} of trials needed.
- Insert x into lists L_0, \ldots, L_{t-1} .

Delete:

- > You get all predecessors via backward pointers.
- Delete *x* in all lists it actually appears in.

The time for both operations is dominated by the search time.

החה	EADS	
	© Ernst Mayr, Harald	Räcke

5

209

```
7.6 Skip Lists
```

210

High Probability

Definition 1 (High Probability)

We say a **randomized** algorithm has running time $O(\log n)$ with high probability if for any constant α the running time is at most $O(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

Here the \mathcal{O} -notation hides a constant that may depend on α .

EADS © Ernst Mayr, Harald Räcke

High Probability

Suppose there are a polynomially many events E_1, E_2, \ldots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the *i*-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

 $\Pr[E_1 \wedge \dots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \dots \vee \bar{E}_{\ell}]$ $\geq 1 - n^c \cdot n^{-\alpha}$ $= 1 - n^{c-\alpha} .$

This means $\Pr[E_1 \land \cdots \land E_\ell]$ holds with high probability.

7.6 Skip Lists	213
	7.6 Skip Lists

7.6 Skip Lists

Lemma 2

A search (and, hence, also insert and delete) in a skip list with n elements takes time O(logn) with high probability (w. h. p.).

EADS © Ernst Mayr, Harald Räcke	7.6 Skip Lists	214

7.6 Skip Lists

Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k .

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

5000	EADS
	© Ernst Mayr, Harald Räcke

7.6 Skip Lists

217

7.6 Skip Lists

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

 $\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$.

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the even A_{k+1} must hold. Hence,

 $\begin{aligned} &\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}] \\ &\leq n^{-\alpha} + n^{-(\gamma-1)} \end{aligned}$

This means, the search requires at most *z* steps, w. h. p.

7.6 Skip Lists

 $\Pr[E_{z,k}] \le \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^{\beta}k}\right)^{k} \cdot n^{-\alpha}$$
$$\leq \left(\frac{2e(\beta + \alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}$$

now choosing
$$\beta = 6\alpha$$
 gives

 \leq

$$\left(\frac{42\alpha}{64^{\alpha}}\right)^k n^{-\alpha} \le n^{-\alpha}$$

for $\alpha \ge 1$.

	7.6 Skip Lists	
🛛 🕒 🖓 🕼 Ernst Mayr, Harald Räcke		218

