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Part I

Organizational Matters

ñ Modul: IN2011

ñ Name: “Parallel Algorithms”

“Parallele Algorithmen”

ñ ECTS: 8 Credit points

ñ Lectures:
ñ 4 SWS

Tue 8:30–10:00 (Room 00.13.009A)
Thu 8:30–10:00 (Room 00.13.009A)

ñ Webpage: http://www14.in.tum.de/lehre/2013WS/pa/



ñ Required knowledge:
ñ IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

ñ IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

ñ IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

ñ IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

ñ IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

ñ IN2003
“Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”



The Lecturer

ñ Harald Räcke

ñ Email: raecke@in.tum.de

ñ Room: 03.09.044

ñ Office hours: (per appointment)
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Tutorials

ñ Tutors:
ñ Chris Pinkau
ñ pinkau@in.tum.de
ñ Room: 03.09.057
ñ Office hours: Tue 13:00–14:00

ñ Room: 03.11.018

ñ Time: Fri 12:15–13:45
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Assignment sheets

ñ In order to pass the module you need to pass

a 3 hour exam
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Assessment

ñ Assignment Sheets:
ñ An assignment sheet is usually made available on Tuesday

on the module webpage.
ñ Solutions have to be handed in in the following week before

the lecture on Tuesday.
ñ You can hand in your solutions by putting them in the right

folder in front of room 03.09.052.
ñ Solutions will be discussed in the subsequent tutorial on

Friday.
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1 Contents

ñ PRAM algorithms
ñ Parallel Models
ñ PRAM Model
ñ Basic PRAM Algorithms
ñ Sorting
ñ Lower Bounds

ñ Networks of Workstations
ñ Offline Permutation Routing on the Mesh
ñ Oblivious Routing in the Butterfly
ñ Greedy Routing
ñ Sorting on the Mesh
ñ ASCEND/DESCEND Programs
ñ Embeddings between Networks

PA 1 Contents
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2 Literatur

Tom Leighton:

Introduction to Parallel Algorithms and Architecture:

Arrays, Trees, Hypercubes,

Morgan Kaufmann: San Mateo, CA, 1992

Joseph JaJa:

An Introduction to Parallel Algorithms,

Addison-Wesley: Reading, MA, 1997

Jeffrey D. Ullman:

Computational Aspects of VLSI,

Computer Science Press: Rockville, USA, 1984

Selim G. Akl.:

The Design and Analysis of Parallel Algorithms,

Prentice Hall: Englewood Cliffs, NJ, 1989
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Part II

Foundations
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3 Introduction

Parallel Computing

A parallel computer is a collection of processors usually of the

same type, interconnected to allow coordination and exchange

of data.

The processors are primarily used to jointly solve a given

problem.

Distributed Systems

A set of possibly many different types of processors are

distributed over a larger geographic area.

Processors do not work on a single problem.

Some processors may act in a malicous way.

PA 3 Introduction
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Cost measures

How do we evaluate sequential algorithms?

ñ time efficiency

ñ space utilization

ñ energy consumption

ñ programmability

ñ . . .

Asymptotic bounds (e.g., for running time) often give a good

indication on the algorithms performance on a wide variety of

machines.

PA 3 Introduction

© Harald Räcke 13



Cost measures

How do we evaluate parallel algorithms?

ñ time efficiency

ñ space utilization

ñ energy consumption

ñ programmability

ñ communication requirement

ñ . . .

Problems

ñ performance (e.g. runtime) depends on problem size n and

on number of processors p
ñ statements usually only hold for restricted types of parallel

machine as parallel computers may have vastly different

characteristics (in particular w.r.t. communication)



Speedup

Suppose a problem P has sequential complexity T∗(n), i.e.,

there is no algorithm that solves P in time o(T∗(n)).

Definition 1

The speedup Sp(n) of a parallel algorithm A that requires time

Tp(n) for solving P with p processors is defined as

Sp(n) = T
∗(n)
Tp(n)

.

Clearly, Sp(n) ≤ p. Goal: obtain Sp(n) ≈ p.

It is common to replace T∗(n) by the time bound of the best

known sequential algorithm for P !

PA 3 Introduction
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Efficiency

Definition 2

The efficiency of a parallel algorithm A that requires time Tp(n)
when using p processors on a problem of size n is

Ep(n) = T1(n)
pTp(n)

.

Ep(n) ≈ 1 indicates that the algorithm is running roughly p
times faster with p processors than with one processor.

Note that Ep(n) ≤ T1(n)
pT∞(n) . Hence, the efficiency goes down

rapidly if p ≥ T1(n)/T∞(n).

Disadvantage: cost-measure does not relate to the optimum

sequential algorithm.

PA 3 Introduction
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Parallel Models — Requirements

Simplicity

A model should allow to easily analyze various performance

measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily

implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful

performance estimates.

A real satisfactory model does not exist!

PA 3 Introduction
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DAG model — computation graph

ñ nodes represent operations (single instructions or larger

blocks)

ñ edges represent dependencies (precedence constraints)

ñ closely related to circuits; however there exist many

different variants

ñ branching instructions cannot be modelled

ñ completely hardware independent

ñ scheduling is not defined

Often used for automatically parallelizing numerical

computations.

PA 3 Introduction
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Example: Addition

+

+

+

A1 A2

+

A3 A4

+

+

A5 A6

+

A7 A8

A1 +

A2

+

A3

+

A4

+

A5

+

A6

+

A7

+

A8

Here, vertices without incoming edges correspond to input data.

The graph can be viewed as a data flow graph.
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DAG model — computation graph

The DAG itself is not a complete algorithm. A scheduling

implements the algorithm on a parallel machine, by assigning a

time-step tv and a processor pv to every node.

Definition 3

A scheduling of a DAG G = (V , E) on p processors is an

assignment of pairs (tv , pv) to every internal node v ∈ V , s.t.,

ñ pv ∈ {1, . . . , p}; tv ∈ {1, . . . , T}
ñ tu = tv ⇒ pu ≠ pv
ñ (u,v) ∈ E ⇒ tv ≥ tu + 1

where a non-internal node x (an input node) has tx = 0.

T is the length of the schedule.

PA 3 Introduction
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DAG model — computation graph

The parallel complexity of a DAG is defined as

Tp(n) = min
schedule S

{T(S)} .

T1(n): #internal nodes in DAG

T∞(n): diameter of DAG

Clearly,
Tp(n) ≥ T∞(n)
Tp(n) ≥ T1(n)/p

Lemma 4

A schedule with length O(T1(n)/p + T∞(n)) can be found easily.

Lemma 5

Finding an optimal schedule is in general NP-complete.



Note that the DAG model as defined is a non-uniform model of

computation.

In principle, there could be a different DAG for every input size

n.

An algorithm (e.g. for a RAM) must work for every input size and

must be of finite description length.

Hence, specifying a different DAG for every n has more

expressive power.

Also, this is not really a complete model, as the operations

allowed in a DAG node are not clearly defined.

PA 3 Introduction
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PRAM Model

Global Shared Memory

P1 P2 P3 P4 P5 P6 P7 P8

All processors are synchronized.

In every round a processor can:

ñ read a register from global memory into local memory

ñ do a local computation à la RAM

ñ write a local register into global memory

PA 3 Introduction
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PRAM Model

Every processor executes the same program.

However, the program has access to two special variables:

ñ p: total number of processors

ñ id ∈ {1, . . . , p}: the id of the current processor

The following (stupid) program copies the content of the global

register x[1] to registers x[2] . . . x[p].

Algorithm 1 copy
1: if id = 1 then round ← 1

2: while round ≤ p and id = round do

3: x[id + 1]← x[id]
4: round ← round + 1

PA 3 Introduction
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PRAM Model
ñ processors can effectively execute different code because of

branching according to id

ñ however, not arbitrarily; still uniform model of computation

Often it is easier to explicitly define which parts of a program

are executed in parallel:

Algorithm 2 sum

1: // computes sum of x[1] . . . x[p]
2: // red part is executed only by processor 1

3: r ← 1

4: while 2r ≤ p do

5: for id mod 2r = 1 pardo

6: // only executed by processors whose id matches

7: x[id] = x[id]+ x[id + 2r−1]
8: r ← r + 1

9: return x[1]



Different Types of PRAMs

Simultaneous Access to Shared Memory:

ñ EREW PRAM:

simultaneous access is not allowed

ñ CREW PRAM:

concurrent read accesses to the same location are allowed;

write accesses have to be exclusive

ñ CRCW PRAM:
concurrent read and write accesses allowed

ñ commom CRCW PRAM
all processors writing to x[i] must write same value

ñ arbitrary CRCW PRAM
values may be different; an arbitrary processor succeeds

ñ priority CRCW PRAM
values may be different; processor with smallest id succeeds

PA 3 Introduction
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Algorithm 3 sum

1: // computes sum of x[1] . . . x[p]
2: r ← 1

3: while 2r ≤ p do

4: for id mod 2r = 1 pardo

5: x[id] = x[id]+ x[id + 2r−1]
6: r ← r + 1

7: return x[1]

The above is an EREW PRAM algorithm.

On a CREW PRAM we could replace Line 4 by

for 1 ≤ id ≤ p pardo

PA 3 Introduction
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PRAM Model — remarks

ñ similar to a RAM we either need to restrict the size of values
that can be stored in registers, or we need to have a
non-uniform cost model for doing a register manipulation
(cost for manipulating x[i] is proportional to the bit-length
of the largest number that is ever being stored in x[i])

ñ in this lecture: uniform cost model but we are not
exploiting the model

ñ global shared memory is very unrealistic in practise as

uniform access to all memory locations does not exist

ñ global synchronziation is very unrealistic; in real parallel

machines a global synchronization is very costly

ñ model is good for understanding basic parallel

mechanisms/techniques but not for algorithm development

ñ model is good for lower bounds

PA 3 Introduction
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Network of Workstations — NOWs

ñ interconnection network represented by a graph G = (V , E)
ñ each v ∈ V represents a processor

ñ an edge {u,v} ∈ E represents a two-way communication

link between processors u and v
ñ network is asynchronous

ñ all coordination/communiation has to be done by explicit

message passing

PA 3 Introduction
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Typical Topologies
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Network of Workstations — NOWs
Computing the sum on a d-dimensional hypercube. Note that

x[0] . . . x[2d − 1] are stored at the individual nodes.

Processors are numbered consecutively starting from 0

Algorithm 4 sum

1: // computes sum of x[0] . . . x[2d − 1]
2: r ← 1

3: while 2r ≤ 2d do // p = 2d

4: if id mod 2r = 0 then

5: temp ← receive(id + 2r−1)
6: x[id] = x[id]+ temp

7: if id mod 2r = 2r−1 then

8: send(x[id], id − 2r−1)
9: r ← r + 1

10: if id = 0 then return x[id]



Network of Workstations — NOWs

Remarks

ñ One has to ensure that at any point in time there is at most

one active communication along a link

ñ There also exist synchronized versions of the model, where

in every round each link can be used once for

communication

ñ In particular the asynchronous model is quite realistic

ñ Difficult to develop and analyze algorithms as a lot of low

level communication has to be dealt with

ñ Results only hold for one specific topology and cannot be

generalized easily

PA 3 Introduction
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Performance of PRAM algorithms

Suppose that we can solve an instance of a problem with size n
with P(n) processors and time T(n).

We call C(n) = T(n) · P(n) the time-processor product or the

cost of the algorithm.

The following statements are equivalent

ñ P(n) processors and time O(T(n))
ñ O(C(n)) cost and time O(T(n))
ñ O(C(n)/p) time for any number p ≤ P(n) processors

ñ O(C(n)/p + T(n)) for any number p of processors

PA 3 Introduction
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Performance of PRAM algorithms

Suppose we have a PRAM algorithm that takes time T(n) and

work W(n), where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at

most

bW(n)/pc + T(n)
parallel steps on p processors.

Idea:

ñ Wi(n) denotes operations in parallel step i, 1 ≤ i ≤ T(n)
ñ simulate each step in dWi(n)/pe parallel steps

ñ then we have∑
i
dWi(n)/pe ≤

∑
i

(bWi(n)/pc + 1
) ≤ bW(n)/pc + T(n)



Performance of PRAM algorithms

Why nearly always?

We need to assign processors to operations.

ñ every processor pi needs to know whether it should be

active

ñ in case it is active it needs to know which operations to

perform

design algorithms for an arbitrary number of processors;

keep total time and work low

PA 3 Introduction
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Optimal PRAM algorithms

Suppose the optimal sequential running time for a problem is

T∗(n).

We call a PRAM algorithm for the same problem work optimal if

its work W(n) fulfills

W(n) = Θ(T∗(n))

If such an algorithm has running time T(n) it has speedup

Sp(n) = Ω
(

T∗(n)
T∗(n)/p + T(n)

)
= Ω

(
pT∗(n)

T∗(n)+ pT(n)

)
= Ω(p)

for p = O(T∗(n)/T(n)).

PA 3 Introduction
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This means by improving the time T(n), (while using same

work) we improve the range of p, for which we obtain optimal

speedup.

We call an algorithm worktime (WT) optimal if T(n) cannot be

asymptotically improved by any work optimal algorithm.

PA 3 Introduction
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Example

Algorithm for computing the sum has work W(n) = O(n).
optimal

T(n) = O(logn). Hence, we achieve an optimal speedup for

p = O(n/ logn).

One can show that any CREW PRAM requires Ω(logn) time to

compute the sum.

PA 3 Introduction
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Communication Cost

When we differentiate between local and global memory we can

analyze communication cost.

We define the communication cost of a PRAM algorithm as the

worst-case traffic between the local memory of a processor and

the global shared memory.

Important criterion as communication is usually a major

bottleneck.

PA 3 Introduction
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Communication Cost

Algorithm 5 MatrixMult(A, B,n)
1: Input: n×n matrix A and B; n = 2k

2: Output: C = AB
3: for 1 ≤ i, j, ` ≤ n pardo

4: X[i, j, `]← A[i, `] · B[`, j]
5: for r ← 1 to logn
6: for 1 ≤ i, j ≤ n; ` mod 2r = 1 pardo

7: X[i, j, `]← X[i, j, `]+X[i, j, ` + 2r−1]
8: C[i, j]← X[i, j, `]

On n3 processors this algorithm runs in time O(logn).
It uses n3 multiplications and O(n3) additions.

PA 3 Introduction
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What happens if we have n processors?

Phase 1

pi computes X[i, j, `] = A[i, `] · B[`, j] for all 1 ≤ j, ` ≤ n
n2 time; n2 communication for every processor

Phase 2 (round r)

pi updates X[i, j, `] for all 1 ≤ j ≤ n; 1 ≤ ` mod 2r = 1

n ·n/2r time; no communication

Phase 3

pi writes i-th row into C[i, j]’s.

n time; n communication

PA 3 Introduction
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Alternative Algorithm

Split matrix into blocks of size n2/3 ×n2/3.

A B· C=

A1,1 B1,1 C1,1

A2,1 B2,1 C2,1

A3,1 B3,1 C3,1

A4,1 B4,1 C4,1

A1,2 B1,2 C1,2

A2,2 B2,2 C2,2

A3,2 B3,2 C3,2

A4,2 B4,2 C4,2

A1,3 B1,3 C1,3

A2,3 B2,3 C2,3

A3,3 B3,3 C3,3

A4,3 B4,3 C4,3

A1,4 B1,4 C1,4

A2,4 B2,4 C2,4

A3,4 B3,4 C3,4

A4,4 B4,4 C4,4

Note that Ci,j =
∑
`Ai,`B`,j.

Now we have the same problem as before but n′ = n1/3 and a

single multiplication costs time O((n2/3)3) = O(n2). An addition

costs n4/3.

work for multiplications: O(n2 · (n′)3) = O(n3)
work for additions: O(n4/3 · (n′)3) = O(n3)
time: O(n2)+ logn′ · O(n4/3) = O(n2)



Alternative Algorithm

The communication cost is only O(n4/3 logn′) as a processor in

the original problem touches at most logn entries of the matrix.

Each entry has size O(n4/3).

The algorithm exhibits less parallelism but still has optimum

work/runtime for just n processors.

much, much better in practise

PA 3 Introduction
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Part III

PRAM Algorithms
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Prefix Sum

input: x[1] . . . x[n]
output: s[1] . . . s[n] with s[i] =∑ij=1 x[i] (w.r.t. operator ∗)

Algorithm 6 PrefixSum(n,x[1] . . . x[n])
1: // compute prefixsums; n = 2k

2: if n = 1 then s[1]← x[1]; return

3: for 1 ≤ i ≤ n/2 pardo

4: a[i]← x[2i− 1]∗ x[2i]
5: z[1], . . . , z[n/2]← PrefixSum(n/2, a[1] . . . a[n/2])
6: for 1 ≤ i ≤ n pardo

7: i even : s[i]← z[i/2]
8: i = 1 : s[1] = x[1]
9: i odd : s[i]← z[(i− 1)/2]∗ x[i]

PA 4.1 Prefix Sum
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Prefix Sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a1 a2 a3 a4 a5 a6 a7 a8

ā1 ā2 ā3 ā4

â1 â2

a′1

z′1

ẑ1 ẑ2

z̄1 z̄2 z̄3 z̄4

z1 z2 z3 z4 z5 z6 z7 z8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1616

x-values

s-values

ti
m

e
st

ep
s



Prefix Sum

The algorithm uses work O(n) and time O(logn) for solving

Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 6

On a CREW PRAM a Prefix Sum requires running time Ω(logn)
regardless of the number of processors.

PA 4.1 Prefix Sum
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Parallel Prefix

Input: a linked list given by successor pointers; a value x[i] for

every list element; an operator ∗;

Output: for every list position ` the sum (w.r.t. ∗) of elements

after ` in the list (including `)

4 3 7 8 2 1 6 5

x[4] x[3] x[7] x[8] x[2] x[1] x[6] x[5]
S[4]=3 S[3]=7 S[7]=8 S[8]=2 S[2]=1 S[1]=6 S[6]=5 S[5]=5

PA 4.2 Parallel Prefix

© Harald Räcke 48



Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping

PA 4.2 Parallel Prefix
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4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 7

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).

PA 4.3 Divide & Conquer — Merging
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4.3 Divide & Conquer — Merging

Given two sorted sequences A = (a1 . . . an) and B = (b1 . . . bn),
compute the sorted squence C = (c1 . . . cn).

Observation:

We can assume wlog. that elements in A and B are different.

Then for ci ∈ C we have i = rank(ci : A∪ B).
This means we just need to determine rank(x : A ∪ B) for all

elements!

Observe, that rank(x : A∪ B) = rank(x : A)+ rank(x : B).

Clearly, for x ∈ A we already know rank(x : A), and for x ∈ B we

know rank(x : B).

PA 4.3 Divide & Conquer — Merging
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4.3 Divide & Conquer — Merging

Compute rank(x : A) for all x ∈ B and rank(x : B) for all x ∈ A.

can be done in O(logn) time with 2n processors by binary

search

Lemma 8

On a CREW PRAM, Merging can be done in O(logn) time and

O(n logn) work.

not optimal

PA 4.3 Divide & Conquer — Merging
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4.3 Divide & Conquer — Merging

A = (a1, . . . , an); B = (b1, . . . , bn);
logn integral; k := n/ logn integral;

Algorithm 8 GenerateSubproblems

1: j0 ← 0

2: jk ← n
3: for 1 ≤ i ≤ k− 1 pardo

4: ji ← rank(bi logn : A)
5: for 0 ≤ i ≤ k− 1 pardo

6: Bi ← (bi logn+1, . . . , b(i+1) logn)
7: Ai ← (aji+1, . . . , aji+1)

If Ci is the merging of Ai and Bi then the sequence C0 . . . Ck−1 is

a sorted sequence.

PA 4.3 Divide & Conquer — Merging
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4.3 Divide & Conquer — Merging

We can generate the subproblems in time O(logn) and work

O(n).

Note that in a sub-problem Bi has length logn.

If we run the algorithm again for every subproblem, (where Ai
takes the role of B) we can in time O(log logn) and work O(n)
generate subproblems where Aj and Bj have both length at

most logn.

Such a subproblem can be solved by a single processor in time

O(logn) and work O(|Ai| + |Bi|).
Parallelizing the last step gives total work O(n) and time

O(logn).

the resulting algorithm is work optimal

PA 4.3 Divide & Conquer — Merging
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4.4 Maximum Computation

Lemma 9

On a CRCW PRAM the maximum of n numbers can be computed

in time O(1) with n2 processors.

proof on board...

PA 4.4 Maximum Computation
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4.4 Maximum Computation

Lemma 10

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n log logn).

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 56



4.4 Maximum Computation

Lemma 11

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n).

proof on board...

PA 4.4 Maximum Computation
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4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence

x0 < x1 < x2 < · · · < xk of elements. We want to insert

elements x1, . . . , xk into the tree (k� n).

time: O(log n); work: O(k log n)

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞

a1 a4

PA 4.5 Inserting into a (2,3)-tree
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4.5 Inserting into a (2, 3)-tree

1. determine for every xi the leaf element before which it has

to be inserted

time: O(logn); work: O(k logn); CREW PRAM

all xi’s that have to be inserted before the same element

form a chain

2. determine the largest/smallest/middle element of every

chain

time: O(1); work: O(k);
3. insert the middle element of every chain

compute new chains

time: O(logn); work: O(ki logn); ki= #inserted elements

(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds

time: O(logn logk); work: O(k logn);
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Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞
x3 x5 x9

a0

a0 a1

x3 a2 x5 a3 x9

x3 a2 x5 a3 x9 a4

a5 a6

a5 a6 ∞

a0

a0 a1

x3 a2

x3 a2 x5

a3 x9

a3 x9 a4

a5 a6

a5 a6 ∞

a1 a4

x5

a1 a4

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level
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4.5 Inserting into a (2, 3)-tree

ñ Step 3, works in phases; one phase for every level of the tree

ñ Step 4, works in rounds; in each round a different set of

elements is inserted

Observation

We can start with phase i of round r as long as phase i of round

r − 1 and (of course), phase i− 1 of round r has finished.

This is called Pipelining. Using this technique we can perform all

rounds in Step 4 in just O(logk+ logn) many parallel steps.
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4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with dlogne
colors.

Algorithm 9 BasicColoring

1: for 1 ≤ i ≤ n pardo

2: col(i)← i
3: ki ← smallest bitpos where col(i) and col(S(i)) differ

4: col′(i)← 2k+ col(i)k
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4.6 Symmetry Breaking

1
4

2

15

45

6

8

1
0

1
1

12

9

13
1

3

7

v col k col′

1 0001 1 2
3 0011 2 4
7 0111 0 1

14 1110 2 5
2 0010 0 0

15 1111 0 1
4 0100 0 0
5 0101 0 1
6 0110 1 3
8 1000 1 2

10 1010 0 0
11 1011 0 1
12 1100 0 0

9 1001 2 4
13 1101 2 5



4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.
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4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).
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4.6 Symmetry Breaking

Lemma 12

We can color vertices in a ring with three colors in O(log∗n)
time and with O(n log∗n) work.

not work optimal
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4.6 Symmetry Breaking

Lemma 13

Given n integers in the range 0, . . . ,O(logn), there is an

algorithm that sorts these numbers in O(logn) time using a

linear number of operations.

Proof: Exercise!

PA 4.6 Symmetry Breaking

© Harald Räcke 67



4.6 Symmetry Breaking

Algorithm 11 OptColor

1: for 1 ≤ i ≤ n pardo

2: col(i)← i
3: apply BasicColoring once

4: sort vertices by colors

5: for ` = 2dlogne to 3 do

6: for all vertices i of color ` pardo

7: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

We can perform Lines 6 and 7 in time O(n`) only because we sorted before. In general a state-
ment like “for constraint pardo” should only contain a contraint on the id’s of the processors
but not something complicated (like the color) which has to be checked and, hence, induces
work. Because of the sorting we can transform this complicated constraint into a constraint on
just the processor id’s.
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Lemma 14

A ring can be colored with 3 colors in time O(logn) and with

work O(n).

work optimal but not too fast
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List Ranking

Input:

A list given by successor pointers;

4 5 7 3 1 2 6 8 9

Output:

For every node number of hops to end of the list;

4 5 7 3 1 2 6 8 9

8 7 6 5 4 3 2 1 0

Observation:

Special case of parallel prefix
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List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 012 8 7 5 1 0

1. Given a list with values; perhaps from previous

iterations.

The list is given via predecessor pointers P(i) and

successor pointers S(i).
S(4) = 5, S(2) = 6, P(3) = 7, etc.
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List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 012 8 7 5 1 0

2. Find an independent set; time: O(logn); work: O(n).
The independent set should contain a constant fraction

of the vertices.

Color vertices; take local minima
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List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 012 8 7 5 1 0

3. Splice the independent set out of the list;

At the independent set vertices the array still contains

old values for P(i) and S(i);
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List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

4. Compress remaining n′ nodes into a new array of n′

entries.

The index positions can be computed by a prefix sum

in time O(logn) and work O(n)
Pointers can then be adjusted in time O(1).
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List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 0

4 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 012 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

5. Solve the problem on the remaining list.

If current size is less than n/ logn do pointer jumping:

time O(logn); work O(n).
Otherwise continue shrinking the list by finding an

independent set
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List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 04 3 1 2 1 4 2 1 0

12 3 8 7 1 5 2 1 0

12 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

6. Map the values back into the larger list. Time: O(1);
Work: O(n)
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List Ranking

4 5 7 3 1 2 6 8 9

1 3 1 1 1 2 2 1 04 3 1 2 1 4 2 1 012 3 8 7 1 5 2 1 0

12 11 8 7 6 5 3 1 0

3 4 2 1 5 6

4 1 2 4 1 0

12 8 7 5 1 0

7. Compute values for independent set nodes. Time:

O(1); Work: O(1).
8. Splice nodes back into list. Time: O(1); Work: O(1).
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We need O(log logn) shrinking iterations until the size of the

remaining list reaches O(n/ logn).

Each shrinking iteration takes time O(logn).

The work for all shrinking operations is just O(n), as the size of

the list goes down by a constant factor in each round.

List Ranking can be solved in time O(logn log logn) and work

O(n) on an EREW-PRAM.
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Optimal List Ranking

In order to reduce the work we have to improve the shrinking of

the list to O(n/ logn) nodes.

After this we apply pointer jumping
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B1 B2 B3 B4 B5 B6

p1 p5p4p2 p3 p3p2p1 p4 p5

1 5 9 13 17 2111 9 215 13 172 6 14 185 175 17

ñ some nodes are active;

ñ active nodes without neighbouring active nodes are

isolated;

ñ the others form sublists;

1 delete isolated nodes from the list;

2 color each sublist with O(log logn) colors; time: O(1);
work: O(n);
label local minima w.r.t. color as ruler; others as subject

first node of sublist is ruler; needs to be changed!!!

3 advance pointers of removed nodes and of subjects;

make new nodes active

New Iteration

0. every ruler deletes its next subject;

rulers without a subject become active
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Optimal List Ranking

Each iteration requires constant time and work O(n/ logn),
because we just work on one node in every block.

We need to prove that we just require O(logn) iterations to

reduce the size of the list to O(n/ logn).
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Observations/Remarks:

ñ If the p-pointer of a block cannot be advanced without

leaving the block, the processor responsible for this block

simply stops working; all other blocks continue.

ñ The p-node of a block (the node pi is pointing to) at the

beginning of a round is either a ruler with a living subject or

the node will become active during the round.

ñ The subject nodes always lie to the left of the p-node of the

respective block (if it exists).

Measure of Progress:

ñ a ruler will delete a subject

ñ an active node either
ñ becomes a ruler (with a subject)
ñ becomes a subject
ñ is isolated and therefore gets deleted
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Analysis

For the analysis we assign a weight to every node in every block

as follows.

Definition 15

The weight of the i-th node in a block is

(1− q)i

with q = 1
log logn , where the node-numbering starts from 0.

Hence, a block has nodes {0, . . . , logn− 1}.

PA 5 List Ranking

© Harald Räcke 77



Definition of Rulers

Properties:

ñ A ruler should have at most log logn subjects.

ñ The weight of a ruler should be at most the weight of any of

its subjects.

ñ Each ruler must have at least one subject.

ñ We must be able to remove the next subject in constant

time.

ñ We need to make the ruler/subject decision in constant

time.
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Given a sublist of active nodes.

Color the sublist with O(log logn) colors. Take the local minima

w.r.t. this coloring.

If the first node is not a ruler

ñ if the second node is a ruler switch ruler status between

first and second

ñ otw. just make the first node into a ruler

This partitions the sub-list into chains of length at most

log log n each starting with a ruler
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Now we change the ruler definition.

Consider some chain.

We make all local minima w.r.t. the weight function into a ruler;

ties are broken according to block-id (so that comparing weights

gives a strict inequality).

A ruler gets as subjects the nodes left of it until the next local

maximum (or the start of the chain) (including the local

maximum) and the nodes right of it until the next local

maximum (or the end of the chain) (excluding the local

maximum).

In case the first node is a ruler the above definition could leave it

without a subject. We use constant time to fix this in some

arbitrary manner
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Set q = 1
log logn .

The i-th node in a block is assigned a weight of (1− q)i,
0 ≤ i < logn

The total weight of a block is at most 1/q and the total weight of

all items is at most n
q logn .

to show:

After O(logn) iterations the weight is at most

(n/ logn)(1− q)logn

This means at most n/ logn nodes remain because the smallest

weight a node can have is (1− q)logn−1.
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In every iteration the weight drops by a factor of

(1− q/4) .
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We consider subject nodes to just have half their weight.

We can view the step of becoming a subject as a precursor to

deletion.

Hence, a node looses half its weight when becoming a subject

and the remaining half when deleted.

Note that subject nodes will be deleted after just an additional

O(log logn) iterations.
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The weight is reduced because

ñ An isolated node is removed.

ñ A node is labelled as ruler, and the corresponding subjects

reduce their weight by a factor of 1/2.

ñ A node is a ruler and deletes one of its subjects.

Hence, the weight reduction comes from p-nodes (ruler/active).
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Each p-node is responsible for some other nodes; it has to

generate a weight reduction large enough so that the weight of

all nodes it is responsible for decreases by the desired factor.

An active node is responsible for all nodes that come after it in

its block.

A ruler is responsible for all nodes that come after it in its block

and for all its subjects.

Note that by this definition every node remaining in the list is

covered.
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Case 1: Isolated Node

Suppose we delete an isolated node v that is the i-th node in its

block.

The weight of all node that v is responsible for is∑
i≤j<logn

(1− q)j

This weight reduces to∑
i<j<logn

(1− q)j ≤ (1− q)
∑

i≤j<logn
(1− q)j

Hence, weight reduces by a factor (1− q) ≤ (1− q/4).
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Case 2: Creating Subjects

Suppose we generate a ruler with at least one subject.

Weight of ruler: (1− q)i1 .

Weight of subjects: (1− q)ij , 2 ≤ j ≤ k.

Initial weight:

Q =
k∑
j=1

∑
ij≤`<logn

(1− q)` ≤ 1
q

k∑
j=1

(1− q)ij ≤ 2
q

k∑
j=2

(1− q)ij

New weight:

Q′ = Q− 1
2

k∑
j=2

(1− q)ij ≤ (1− q
4
)Q



Case 3: Removing Subjects

weight of ruler: (1− q)i1 ; weight of subjects: (1− q)ij , 2 ≤ j ≤ k

Assume ruler removes subject with largest weight say i2 (why?).

Initial weight:

Q =
∑

i1≤`<logn

(1− q)` + 1
2

k∑
j=2

(1− q)ij

≤ 1
q
(1− q)i1 + k

2
(1− q)i2

≤ 1
q
(1− q)i2 + 1

2q
(1− q)i2

New weight:

Q′ = Q− 1
2
(1− q)i2 ≤ (1− q

3
)Q



After s iterations the weight is at most

n
q logn

(
1− q

4

)s !≤ n
logn

(1− q)logn

Choosing i = 5 logn the inequality holds for sufficiently large n.
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Tree Algorithms
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Euler Circuits

Every node v fixes an arbitrary ordering among its adjacent

nodes:

u0, u1, . . . , ud−1

We obtain an Euler tour by setting

succ((ui, v)) = (v,u(i+1)mod d)
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Euler Circuits

Lemma 16

An Euler circuit can be computed in constant time O(1) with

O(n) operations.
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Euler Circuits — Applications

Rooting a tree

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = 1 for every edge;

ñ perform parallel prefix; let s[·] be the result array

ñ if s[(u,v)] < s[(v,u)] then u is parent of v;
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Euler Circuits — Applications

Postorder Numbering

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = 1 for every edge (v,parent(v))
ñ assign x[e] = 0 for every edge (parent(v), v)
ñ perform parallel prefix

ñ post(v) = s[(v,parent(v))]; post(r) = n
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Euler Circuits — Applications

Level of nodes

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = −1 for every edge (v,parent(v))
ñ assign x[e] = 1 for every edge (parent(v), v)
ñ perform parallel prefix

ñ level(v) = s[(parent(v), v)]; level(r) = 0
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Euler Circuits — Applications

Number of descendants

ñ split the Euler tour at node r
ñ this gives a list on the set of directed edges (Euler path)

ñ assign x[e] = 0 for every edge (parent(v), v)
ñ assign x[e] = 1 for every edge (v,parent(v)), v ≠ r
ñ perform parallel prefix

ñ size(v) = s[(v,parent(v))]− s[(parent(v), v)]
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Rake Operation

Given a binary tree T .

Given a leaf u ∈ T with p(u) ≠ r the rake-operation does the

following

ñ remove u and p(u)
ñ attach sibling of u to p(p(u))

4

3

1

2

8 9

5

6 8
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We want to apply rake operations to a binary tree T until T just

consists of the root with two children.

Possible Problems:

1. we could concurrently apply the rake-operation to two

siblings

2. we could concurrently apply the rake-operation to two

leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above

cases occurs
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Algorithm:

ñ label leaves consecutively from left to right (excluding

left-most and right-most leaf), and store them in an array A
ñ for dlog(n+ 1)e iterations

ñ apply rake to all odd leaves that are left children
ñ apply rake operation to remaining odd leaves (odd at start

of round!!!)
ñ A=even leaves
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Observations

ñ the rake operation does not change the order of leaves

ñ two leaves that are siblings do not perform a rake operation

in the same round because one is even and one odd at the

start of the round

ñ two leaves that have adjacent parents either have different

parity (even/odd) or they differ in the type of child

(left/right)
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Cases, when the left edge btw. p(u) and p(v) is a left-child

edge.

1 2

u

v

u

2

3 4

v
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Example

17

12

9

8 1

2

14

3 15

13

10

4 5

11

6 7

16
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ñ one iteration can be performed in constant time with O(|A|)
processors, where A is the array of leaves;

ñ hence, all iterations can be performed in O(logn) time and

O(n) work;

ñ the intial parallel prefix also requires time O(logn) and

work O(n)

PA 6 Tree Algorithms

© Harald Räcke 103



Evaluating Expressions

Suppose that we want to evaluate an expression tree, containing

additions and multiplications.

+

∗

∗

A1 A2

+

A3 A4

+

+

A5 A6

∗

A7 A8

A1 +

A2

+

A3

+

A4

+

A5

+

A6

+

A7

+

A8

∗ ∗

If the tree is not balanced this may be time-consuming.
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We can use the rake-operation to do this quickly.

Applying the rake-operation changes the tree.

In order to maintain the value we introduce parameters av and

bv for every node that still allows to compute the value of a

node based on the value of its children.

Invariant:

Let u be internal node with children v and w. Then

val(u) = (av · val(v)+ bv)⊗ (aw · val(w)+ bw)

where ⊗ ∈ {∗,+} is the operation at node u.

Initially, we can choose av = 1 and bv = 0 for every node.
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Rake Operation

∗

+

x1

+

x2 x3

∗

x4 x5

r

u

v

w

Currently the value at u is

val(u) = (av · val(v)+ bv)+ (aw · val(w)+ bw)
= x1 + (aw · val(w)+ bw)

In the expression for r this goes in as

au· [x1 + (aw · val(w)+ bw)]+ bu
= auaw · val(w)+ aux1 + aubw + bu︸ ︷︷ ︸

a′w
︸ ︷︷ ︸

b′w
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If we change the a and b-values during a rake-operation

according to the previous slide we can calculate the value of the

root in the end.

Lemma 17

We can evaluate an arithmetic expression tree in time O(logn)
and work O(n) regardless of the height or depth of the tree.

By performing the rake-operation in the reverse order we can

also compute the value at each node in the tree.
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Lemma 18

We compute tree functions for arbitrary trees in time O(logn)
and a linear number of operations.

proof on board...
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In the LCA (least common ancestor) problem we are given a tree

and the goal is to design a data-structure that answers

LCA-queries in constant time.

PA 6 Tree Algorithms

© Harald Räcke 109



Least Common Ancestor

LCAs on complete binary trees (inorder numbering):

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

1000

0100

0010

0001 0011

0110

0101 0111

1100

1010

1001 1011

1110

1101 1111

The least common ancestor of u and v is

z1 z2 . . . zi 1 0 . . . 0

where zi+1 is the first bit-position in which u and v differ.
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Least Common Ancestor

1

2

3 4

5 6 7

8 9

1 2 3 2 4 5 4 6 4 7 4 2 1 8 1 9 1

0 1 2 1 2 3 2 3 2 3 2 1 0 1 0 1 0

nodes

levels
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`(v) is index of first appearance of v in node-sequence.

r(v) is index of last appearance of v in node-squence.

`(v) and r(v) can be computed in constant time, given the

node- and level-sequence.
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Least Common Ancestor

Lemma 19

1. u is ancestor of v iff `(u) < `(v) < r(u)

2. u and v are not related iff either r(u) < `(v) or

`(u) < r(v)

3. suppose r(u) < `(v) then LCA(u,v) is vertex with

minimum level over interval [r(u), `(v)].
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Range Minima Problem

Given an array A[1 . . . n], a range minimum query (`, r) consists

of a left index ` ∈ {1, . . . , n} and a right index r ∈ {1, . . . , n}.

The answer has to return the index of the minimum element in

the subsequence A[` . . . r ].

The goal in the range minima problem is to preprocess the array

such that range minima queries can be answered quickly

(constant time).
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Observation

Given an algorithm for solving the range minima problem in time

T(n) and work W(n) we can obtain an algorithm that solves the

LCA-problem in time O(T(n)+ logn) and work O(n+W(n)).

Remark

In the sequential setting the LCA-problem and the range minima

problem are equivalent. This is not necessarily true in the

parallel setting.

For solving the LCA-problem it is sufficient to solve the restricted

range minima problem where two successive elements in the

array just differ by +1 or −1.

PA 6 Tree Algorithms

© Harald Räcke 115



Prefix and Suffix Minima

Tree with prefix-minima and suffix-minima:

6 4 2 3 4 5 1 6 0 5 1 6 3 4 5 3

6 4 2 2 2 2 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 06 4 2 2 2 2 1 1

6 4 2 2 4 4 1 1 0 0 0 0 3 3 3 3

6 4 2 2 4 4 1 1 0 0 1 1 3 3 5 3

3333311000000000

3333311061111111

3222 6111 6110 3333

44 32 54 61 50 61 43 33
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ñ Suppose we have an array A of length n = 2k

ñ We compute a complete binary tree T with n leaves.

ñ Each internal node corresponds to a subsequence of A. It

contains an array with the prefix and suffix minima of this

subsequence.

Given the tree T we can answer a range minimum query (`, r) in

constant time.

ñ we can determine the LCA x of ` and r in constant time

since T is a complete binary tree

ñ Then we consider the suffix minimum of ` in the left child

of x and the prefix minimum of r in the right child of x.

ñ The minimum of these two values is the result.
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Lemma 20

We can solve the range minima problem in time O(logn) and

work O(n logn).
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Reducing the Work

Partition A into blocks Bi of length logn

Preprocess each Bi block separately by a sequential algorithm so

that range-minima queries within the block can be answered in

constant time. (how?)

For each block Bi compute the minimum xi and its prefix and

suffix minima.

Use the previous algorithm on the array (x1, . . . , xn/ logn).
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Answering a query (`, r):

ñ if ` and r are from the same block the data-structure for

this block gives us the result in constant time

ñ if ` and r are from different blocks the result is a minimum

of three elements:

• the suffix minmum of entry ` in `’s block

• the minimum among x`+1, . . . , xr−1

• the prefix minimum of entry r in r ’s block
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Searching

An extension of binary search with p processors gives that one

can find the rank of an element in

logp+1(n) =
logn

log(p + 1)

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model

searching cannot be done faster than O(logn− logp) with p
processors even if there are p copies of the search key.

PA 7 Searching and Sorting

© Harald Räcke 121



Merging

Given two sorted sequences A = (a1, . . . , an) and

B = (b1, . . . , bn), compute the sorted squence C = (c1, . . . , cn).

Definition 21

Let X = (x1, . . . , xt) be a sequence. The rank rank(y : X) of y in

X is

rank(y : X) = |{x ∈ X | x ≤ y}|

For a sequence Y = (y1, . . . , ys) we define

rank(Y : X) := (r1, . . . , rs) with ri = rank(yi : X).
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Merging

We have already seen a merging-algorithm that runs in time

O(logn) and work O(n).

Using the fast search algorithm we can improve this to a running

time of O(log logn) and work O(n log logn).
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Merging

Input: A = a1, . . . , an; B = b1, . . . , bm; m ≤ n
1. if m < 4 then rank elements of B, using the parallel search

algorithm with p processors. Time: O(1). Work: O(n).
2. Concurrently rank elements b√m, b2

√
m, . . . , bm in A using

the parallel search algorithm with p = √n. Time: O(1).
Work: O(√m · √n) = O(n)
j(i) := rank(bi√m : A)

3. Let Bi = (bi√m+1, . . . , b(i+1)
√
m−1); and

Ai = (aj(i)+1, . . . , aj(i+1)).

Recursively compute rank(Bi : Ai).

4. Let k be index not a multiple of
√
m. i = d k√me. Then

rank(bk : A) = j(i)+ rank(bk : Ai).
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The algorithm can be made work-optimal by standard

techniques.

proof on board...

PA 7 Searching and Sorting

© Harald Räcke 125



Mergesort

Lemma 22

A straightforward parallelization of Mergesort can be

implemented in time O(logn log logn) and with work O(n logn).

This assumes the CREW-PRAM model.
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Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the

leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary

tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary

tree can be performed in parallel we obtain time O(h log logn)
and work O(hn), where h = O(logn) is the height of the tree.

PA 7 Searching and Sorting

© Harald Räcke 127



Pipelined Mergesort

We again compute L[v] for every node in the complete binary

tree.

After round s, Ls[v] is an approximation of L[v] that will be

improved in future rounds.

For s ≥ 3 height(v), Ls[v] = L[v].
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Pipelined Mergesort

In every round, a node v sends sample(Ls[v]) (an

approximation of its current list) upwards, and receives

approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round s if s ≤ 3 height(v) (this means

its list is not yet complete at the start of the round, i.e.,

Ls−1[v] ≠ L[v]).
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Pipelined Mergesort

Algorithm 11 ColeSort()
1: initialize L0[v] = Av for leaf nodes; L0[v] = � otw.

2: for s ← 1 to 3 · height(T) do

3: for all active nodes v do

4: // u and w children of v
5: L′s[u]← sample(Ls−1[u])
6: L′s[w]← sample(Ls−1[w])
7: Ls[v]←merge(L′s[u], L′s[u])

sample(Ls[v]) =


sample4(Ls[v]) s ≤ 3 height(v)
sample2(Ls[v]) s = 3 height(v)+ 1

sample1(Ls[v]) s = 3 height(v)+ 2
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Colesort
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Pipelined Mergesort

Lemma 23

After round s = 3 height(v), the list Ls[v] is complete.

Proof:

ñ clearly true for leaf nodes

ñ suppose it is true for all nodes up to height h;

ñ fix a node v on level h+ 1 with children u and w
ñ L3h[u] and L3h[w] are complete by induction hypothesis

ñ further sample(L3h+2[u]) = L[u] and

sample(L3h+2[v]) = L[v]
ñ hence in round 3h+ 3 node v will merge the complete list

of its children; after the round L[v] will be complete
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Pipelined Mergesort

Lemma 24

The number of elements in lists Ls[v] for active nodes v is at

most O(n).

proof on board...
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Definition 25

A sequence X is a c-cover of a sequence Y if for any two

consecutive elements α,β from (−∞, X,∞) the set

|{yi | α ≤ yi ≤ β}| ≤ c.
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Pipelined Mergesort

Lemma 26

L′s[v] is a 4-cover of L′s+1[v].

If [a, b] with a,b ∈ L′s[v]∪ {−∞,∞} fulfills

|[a, b]∩ (L′s[v]∪ {−∞,∞})| = k we say [a, b] intersects

(−∞, L′s[v],+∞) in k items.

Lemma 27

If [a, b] intersects (−∞, L′s[v],∞) in k ≥ 2 items, then [a, b]
intersects (−∞, L′s+1,∞) in at most 2k items.
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L′s[v]

Ls−1[v]

= k

≤ 4k − 3

L′s−1[u] L′s−1[w]p q

p + q ≤ 4k − 1

L′s[u] L′s[w]2p 2q

Ls[v] ≤ 2p + 2q < 4k

L′s+1[v] < k

Note that the last step holds as long L′s+1[v] = sample4(Ls[v]). Otw. Ls−1[v] has already been
full, and hence, L′s[v], L′s+1[v], L

′
s+2[v] are 4-covers of the complete list L[v], and also 4-covers

of each other.



Merging with a Cover

Lemma 28

Given two sorted sequences A and B. Let X be a c-cover of A and

B for constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time O(1) using O(|X|) operations.
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Merging with a Cover

Lemma 29

Given two sorted sequences A and B. Let X be a c-cover of A for

constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time O(1) using O(|X| + |B|)
operations; this means we can compute rank(A : B) and

rank(B : A).
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In order to do the merge in iteration s + 1 in constant time we

need to know

rank(Ls[v] : L′s+1[u]) and rank(Ls[v] : L′s+1[v])

and we need to know that Ls[v] is a 4-cover of L′s+1[u] and

L′s+1[v].
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Lemma 30

Ls[v] is a 4-cover of L′s+1[u] and L′s+1[v].

ñ Ls[v] ⊇ L′s[u], L′s[u]
ñ L′s[u] is 4-cover of L′s+1[u]
ñ Hence, Ls[v] is 4-cover of L′s+1[u] as adding more elements

cannot destroy the cover-property.
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Analysis

Lemma 31

Suppose we know for every internal node v with children u and

w
ñ rank(L′s[v] : L′s+1[v])
ñ rank(L′s[u] : L′s[w])
ñ rank(L′s[w] : L′s[u])

We can compute

ñ rank(L′s+1[v] : L′s+2[v])
ñ rank(L′s+1[u] : L′s+1[w])
ñ rank(L′s+1[w] : L′s+1[u])

in constant time and O(|Ls+1[v]|) operations, where v is the

parent of u and w.
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Given

ñ rank(L′s[u] : L′s+1[u]) (4-cover)

ñ rank(L′s[u] : L′s[w])
ñ rank(L′s[w] : L′s[u])
ñ rank(L′s[w] : L′s+1[w]) (4-cover)

Compute

ñ rank(L′s[w] : L′s+1[u])
ñ rank(L′s[u] : L′s+1[w])

Compute

ñ rank(L′s+1[w] : L′s+1[u])
ñ rank(L′s+1[u] : L′s+1[w])

ranks between siblings can be computed easily
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Given

ñ rank(L′s[u] : L′s+1[u]) (4-cover)

ñ rank(L′s[u] : L′s+1[w])
ñ rank(L′s[w] : L′s+1[u])
ñ rank(L′s[w] : L′s+1[w]) (4-cover)

Compute (recall that Ls[v] =merge(L′s[u], L′s[w]))
ñ rank(Ls[v] : L′s+1[u])
ñ rank(Ls[v] : L′s+1[w])

Compute

ñ rank(Ls[v] : Ls+1[v]) (by adding)

ñ rank(L′s+1[v] : L′s+2[v]) (by sampling)
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Definition 32

A 0-1 sequence S is bitonic if it can be written as the

concatenation of subsequences S1 and S2 such that either

ñ S1 is monotonically increasing and S2 monotonically

decreasing, or

ñ S1 is monotonically decreasing and S2 monotonically

increasing.

Note, that this just defines bitonic 0-1 sequences. Bitonic

sequences are defined differently.
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Bitonic Merger

If we feed a bitonic 0-1 sequence S into the

network on the right we obtain two bitonic

sequences ST and SB s.t.

1. SB ≤ ST (element-wise)

2. SB and ST are bitonic

Proof:

ñ assume wlog. S more 1’s than 0’s.

ñ assume for contradiction two 0s at
same comparator (i, j = i+ 2d)

ñ everything 0 btw i and j means we
have more than 50% zeros (�).

ñ all 1s btw. i and j means we have
less than 50% ones (�).

ñ 1 btw. i and j and elsewhere
means S is not bitonic (�).

S

SB

ST



Bitonic Merger

Bitonic Merger Bd
The bitonic merger Bd
of dimension d is con-

structed by combining

two bitonic mergers of

dimension d− 1.

If we feed a bitonic 0-1

sequence into this, the

sequence will be sorted.

(actually, any bitonic se-

quence will be sorted,

but we do not prove

this)

Bd−1

Bd−1



Bitonic Sorter Sd

Sd−1

S′d−1



Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).
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Odd-Even Merge
How to merge two sorted sequences?

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn), n even.

Split into odd and even sequences:

Aodd = (a1, a3, a5, . . . , an−1), Aeven = (a2, a4, a6, . . . an)
Bodd = (b1, b3, b5, . . . , bn−1), Beven = (b2, b4, b6, . . . , bn)

Let

X =merge(Aodd, Bodd) and Y =merge(Aeven, Beven)

Then

S = (x1,min{x2, y1},max{x2, y1},min{x3, y2}, . . . , yn)
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Odd-Even Merge

Md−1

Md−1



Theorem 33

There exists a sorting network with depth O(logn) and

O(n logn) comparators.
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Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3p-ary tree.

ñ each internal node represents a set of p comparisons btw.

p pairs (not necessarily distinct)

ñ a leaf v corresponds to a unique permutation that is valid

for all the comparisons on the path from the root to v
ñ the number of parallel steps is the height of the tree
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Comparison PRAM

A comparison PRAM is a PRAM where we can only compare the

input elements;

ñ we cannot view them as strings

ñ we cannot do calculations on them

A lower bound for the comparison tree with parallelism p
directly carries over to the comparison PRAM with p processors.
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A Lower Bound for Searching

Theorem 34

Given a sorted table X of n elements and an element y.

Searching for y in X requires Ω( logn
log(p+1)) steps in the parallel

comparsion tree with parallelism p < n.
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A Lower Bound for Maximum

Theorem 35

A graph G with m edges and n vertices has an independent set

on at least n2

2m+n vertices.

base case (n = 1)

ñ The only graph with one vertex has m = 0, and an

independent set of size 1.
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induction step (1, . . . , n → n + 1)

ñ Let G be a graph with n+ 1 vertices, and v a node with

minimum degree (d).

ñ Let G′ be the graph after deleting v and its adjacent

vertices in G.

ñ n′ = n− (d+ 1)
ñ m′ ≤m− d

2 (d+ 1) as we remove d+ 1 vertices, each with

degree at least d
ñ In G′ there is an independent set of size ((n′)2/(2m′+n′)).
ñ By adding v we obtain an indepent set of size

1+ (n′)2

2m′ +n′ ≥
n2

2m+n



A Lower Bound for Maximum

Theorem 36

Computing the maximum of n elements in the comparison tree

requires Ω(log logn) steps whenever the degree of parallelism is

p ≤ n.

Theorem 37

Computing the maximum of n elements requires Ω(log logn)
steps on the comparison PRAM with n processors.
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An adversary can specify the input such that at the end of the

(i+ 1)-st step the maximum lies in a set Ci+1 of size si+1 such

that

ñ no two elements of Ci+1 have been compared

ñ si+1 ≥ s2
i

2p+ci
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Theorem 38

The selection problem requires Ω(logn/ log logn) steps on a

comparison PRAM.

not proven yet
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A Lower Bound for Merging

The (k, s)-merging problem, asks to merge k pairs of

subsequences A1, . . . , Ak and B1, . . . , Bk where we know that all

elements in Ai ∪ Bi are smaller than elements in Aj ∪ Bj for

(i < j).
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A Lower Bound for Merging

Lemma 39

Suppose we are given a parallel comparison tree with

parallelism p to solve the (k, s) merging problem. After the first

step an adversary can specify the input such that an arbitrary

(k′, s′) merging problem has to be solved, where

k′ = 3
4

√
pk

s′ = s
4

√
k
p
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A Lower Bound for Merging

Partition Ais and Bis into blocks of length roughly s/`; hence `
blocks.

Define an ` × ` binary matrix Mi, where Mixy is 0 iff the parallel

step did not compare an element from Aix with an element from

Biy .

The matrix has 2` − 1 diagonals.

PA 9 Lower Bounds

© Harald Räcke 162



Choose for every i the diagonal of Mi that has most zeros.

Pair all Aij+di , B
i
j, (where di ∈ {−(` − 1), . . . , ` − 1} specifies the

chosen diagonal) for which the entry in Mi is zero.

We can choose value s.t. elements for the j-th pair along the

diagonal are all smaller than for the (j + 1)-th pair.

Hence, we get a (k′, s′) problem.
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How many pairs do we have?

ñ there are k` blocks in total

ñ there are k · `2 matrix entries in total

ñ there are at least k · `2 − p zeros.

ñ choosing a random diagonal (same for every matrix Mi) hits

at least
k`2 − p
2` − 1

≥ k`
2
− p

2`
zeroes.

ñ Choosing ` = 2
√
p
k gives

k′ ≥ 3
4

√
pk and s′ = b s

`
c ≥ s

2`
= s

4

√
k
p

where we assume s
` ≥ 2.
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Lemma 40

Let T(k, s, p) be the number of parallel steps required on a

comparison tree to solve the (k, s) merging problem. Then

T(k,p, s) ≥ 1
4

log
log pk
log p

ks

provided that p ≥ 2ks and p ≤ ks2/4
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Induction Step:

Assume that

T(k′, s′, p) ≥ 1
4

log
log p

k′

log p
k′s′

≥ 1
4

log
log 4

3

√
p
k

log 16
3
p
ks

≥ 1
4

log
1
2 log pk
7 log p

ks

≥ 1
4

log
log pk
log p

ks
− 1

This gives the induction step.
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Theorem 41

Merging requires at least Ω(log logn) time on a CRCW PRAM

with n processors.
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Simulations between PRAMs

Theorem 42

We can simulate a p-processor priority CRCW PRAM on a

p-processor EREW PRAM with slowdown O(logp).
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Simulations between PRAMs

Theorem 43

We can simulate a p-processor priority CRCW PRAM on a

p logp-processor common CRCW PRAM with slowdown O(1).
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Simulations between PRAMs

Theorem 44

We can simulate a p-processor priority CRCW PRAM on a

p-processor common CRCW PRAM with slowdown O( logp
log logp ).
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Simulations between PRAMs

Theorem 45

We can simulate a p-processor priority CRCW PRAM on a

p-processor arbitrary CRCW PRAM with slowdown O(log logp).
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Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable
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Lower Bounds for the CREW PRAM

Definition 46

An input index i affects a memory location M at time t on some

input I if the content of M at time t differs between inputs I and

I(i) (i-th bit flipped).

L(M, t, I) = {i | i affects M at time t on input I}
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Lower Bounds for the CREW PRAM

Definition 47

An input index i affects a processor P at time t on some input I
if the state of P at time t differs between inputs I and I(i) (i-th
bit flipped).

K(P, t, I) = {i | i affects P at time t on input I}
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Lower Bounds for the CREW PRAM

Lemma 48

If i ∈ K(P, t, I) with t > 1 then either

ñ i ∈ K(P, t − 1, I), or

ñ P reads a global memory location M on input I at time t,
and i ∈ L(M, t − 1, I).
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Lower Bounds for the CREW PRAM

Lemma 49

If i ∈ L(M, t, I) with t > 1 then either

ñ A processor writes into M at time t on input I and

i ∈ K(P, t, I), or

ñ No processor writes into M at time t on input I and
ñ either i ∈ L(M, t − 1, I)
ñ or a processor P writes into M at time t on input I(i).
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Let k0 = 0, `0 = 1 and define

kt+1 = kt + `t and `t+1 = 3kt + 4`t

Lemma 50

|K(P, t, I)| ≤ kt and |L(M, t, I)| ≤ `t for any t ≥ 0
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base case (t = 0):
ñ No index can influence the local memory/state of a

processor before the first step (hence |K(P,0, I)| = k0 = 0).

ñ Initially every index in the input affects exactly one memory

location. Hence |L(M,0, I)| = 1 = `0.
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induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)| ≤ |K(P, t, I)| + |L(M, t, I)|
≤ kt + `t
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induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + `t = `t+1
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Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.
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Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

Fact:

For all pairs us , ut with Pws ≠ Pwt either

us ∈ K(Pwt , t + 1, I(ut)) or ut ∈ K(Pws , t + 1, I(us)).

Otherwise, Pwt and Pws would both write into M at the same

time on input I(us)(ut).
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Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.
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For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t
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Recall that L(M, t + 1, i) ⊆ L(M, t, i)∪ Y(M, t + 1, I)

|L(M, t + 1, i)| ≤ 3kt + 4`t
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(
kt+1

`t+1

)
=
(

1 1

3 4

)(
kt
`t

) (
k0

`0

)
=
(

0

1

)

Eigenvalues:

λ1 = 1
2
(5+

√
21) and λ2 = 1

2
(5−

√
21)

Eigenvectors:

v1 =
(

1

−(1− λ1)

)
and v2 =

(
1

−(1− λ2)

)

v1 =
(

1
3
2 + 1

2

√
21)

)
and v2 =

(
1

3
2 − 1

2

√
21

)



v1 =
(

1
3
2 + 1

2

√
21)

)
and v2 =

(
1

3
2 − 1

2

√
21

)
(
k0

`0

)
=
(

0

1

)
= 1√

21
(v1 − v2)

(
kt
`t

)
= 1√

21

(
λt1v1 − λt2v2

)



Solving the recurrence gives

kt = λt1√
21
− λt2√

21

`t = 3+√21

2
√

21
λt1 +

−3+√21

2
√

21
λt2

with λ1 = 1
2(5+

√
21) and λ2 = 1

2(5−
√

21).
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Theorem 51

The following problems require logarithmic time on a CREW

PRAM.

ñ Sorting a sequence of x1, . . . , xn with xi ∈ {0,1}
ñ Computing the maximum of n inputs

ñ Computing the sum x1 + · · · + xn with xi ∈ {0,1}
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A Lower Bound for the EREW PRAM

Definition 52 (Zero Counting Problem)

Given a monotone binary sequence x1, x2, . . . , xn determine the

index i such that xi = 0 and xi+1 = 1.

We show that this problem requires Ω(logn− logp) steps on a

p-processor EREW PRAM.
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Let Ii be the input with i zeros folled by n− i ones.

Index i affects processor P at time t if the state in step t is

differs between Ii−1 and Ii.

Index i affects location M at time t if the content of M after step

t differs between inputs Ii−1 and Ii.
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Lemma 53

If i ∈ K(P, t) then either

ñ i ∈ K(P, t − 1), or

ñ P reads some location M on input Ii (and, hence, also on

Ii−1) at step t and i ∈ L(M, t − 1)
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Lemma 54

If i ∈ L(M, t) then either

ñ i ∈ L(M, t − 1), or

ñ Some processor P writes M at step t on input Ii and

i ∈ K(P, t).
ñ Some processor P writes M at step t on input Ii−1 and

i ∈ K(P, t).
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Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).
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For an index i to newly appear in L(M, t) some processor must

write into M on either input Ii or Ii−1.

Hence, any index in K(P, t) can at most generate two new

indices in L(M, t).

This means that the number of new indices in any set L(M, t)
(over all M) is at most

2
∑
P
|K(P, t)|
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Hence, ∑
M
|L(M, t)| ≤

∑
M
|L(M, t − 1)| + 2

∑
P
|K(P, t)|

We can assume wlog. that L(M, t − 1) ⊆ L(M, t). Then

∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|
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For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).
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Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 198



This gives∑
P
K(P, t)+

∑
M

max{0, |L(M, t)| − 1}

≤ 4
∑
M

max{0, |L(M, t − 1)| − 1} + 6
∑
P
|K(P, t − 1)| + 3|P |

Hence,

C(t) ≤ 6C(t − 1)+ 3|P |
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Bufferfly Network BF(d)

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0

1

2

3

4

ñ node set V = {(`, x̄) | x̄ ∈ [2]d, ` ∈ [d+ 1]}, where
x̄ = x0 x1 . . . xd−1 is a bit-string of length d

ñ edge set
E = {{(`, x̄), (` + 1, x̄′)} | ` ∈ [d], x̄ ∈ [2]d, x′i = xi for i ≠ `}

Sometimes the first and last level are identified.



Beneš Network

000

001

010

011

100

101

110

111

0 1-1 2-2 3-3

ñ node set V = {(`, x̄) | x̄ ∈ [2]d, ` ∈ {−d, . . . , d}}
ñ edge set
E = {{(`, x̄), (` + 1, x̄′)} | ` ∈ [d], x̄ ∈ [2]d, x′i = xi for i ≠ `}

∪ {{(−`, x̄), (` − 1, x̄′)} | ` ∈ [d], x̄ ∈ [2]d, x′i = xi for i ≠ `}



n-ary Bufferfly Network BF(n, d)

000 001 002 010 011 012 020 021 022 100 101 102 110 111 112 120 121 122 200 201 202 210 211 212 220 221 222

0

1

2

3

ñ node set V = {(`, x̄) | x̄ ∈ [n]d, ` ∈ [d+ 1]}, where
x̄ = x0 x1 . . . xd−1 is a bit-string of length d

ñ edge set
E = {{(`, x̄), (` + 1, x̄′)} | ` ∈ [d], x̄ ∈ [n]d, x′i = xi for i ≠ `}



Permutation Network PN(n, d)

000

001

010

011

100

101

110

111

0 1-1 2-2 3-3

ñ There is an n-ary version of the Benes network (2 n-ary
butterflies glued at level 0).

ñ identifying levels 0 and 1 (or 0 and −1) gives PN(n,d).



The d-dimensional mesh M(n, d)

ñ node set V = [n]d

ñ edge set E = {{(x0, . . . , xi, . . . , xd−1), (x0, . . . , xi + 1, . . . , xd−1)} |
xs ∈ [n] for s ∈ [d] \ {i}, xi ∈ [n− 1]}



Remarks

M(2, d) is also called d-dimensional hypercube.

M(n,1) is also called linear array of length n.
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Permutation Routing

Lemma 55

On the linear array M(n,1) any permutation can be routed

online in 2n steps with buffersize 3.
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Permutation Routing

Lemma 56

On the Beneš network any permutation can be routed offline in

2d steps between the sources level (+d) and target level (−d).
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Recursive Beneš Network

B(d − 1)

B(d − 1)



Permutation Routing
base case d = 0

trivial

induction step d → d + 1

ñ The packets that start at (ā, d) and (ā(d), d) have to be

sent into different sub-networks.

ñ The packets that end at (ā,−d) and (ā(d),−d) have to

come out of different sub-networks.

We can generate a graph on the set of packets.

ñ Every packet has an incident source edge (connecting it to

the conflicting start packet)

ñ Every packet has an incident target edge (connecting it to

the conflicting packet at its target)

ñ This clearly gives a bipartite graph; Coloring this graph tells

us which packet to send into which sub-network.



Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks B(n,d− 1).

All packets starting at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to be send to different

sub-networks.

All packets ending at positions

{(x0, . . . , xi, . . . , xd−1, d) | xi ∈ [n]} have to come from different

sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes

in a hyperedge share a color.

This gives the routing.



Lemma 57

On a d-dimensional mesh with sidelength n we can route any

permutation (offline) in 4dn steps.
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We can simulate the algorithm for the n-ary Beneš Network.

Each step can be simulated by routing on disjoint linear arrays.

This takes at most 2n steps.
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We simulate the behaviour of the Beneš network on the

n-dimensional mesh.

In round r ∈ {−d, . . . ,−1,0,1, . . . , d− 1} we simulate the step of

sending from level r of the Beneš network to level r + 1.

Each node x̄ ∈ [n]d of the mesh simulates the node (r , x̄).

Hence, if in the Beneš network we send from (r , x̄) to (r + 1, x̄′)
we have to send from x̄ to x̄′ in the mesh.

All communication is performed along linear arrays. In round

r < 0 the linear arrays along dimension −r − 1 (recall that

dimensions are numbered from 0 to d− 1) are used

x̄d−1 . . . x̄−rαx̄−r−2 . . . x̄0

In rounds r ≥ 0 linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.



Lemma 58

We can route any permutation on the Beneš network in O(d)
steps with constant buffer size.

The same is true for the butterfly network.
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The nodes are of the form (`, x̄), x̄ ∈ [n]d, ` ∈ −d, . . . , d.

We can view nodes with same first coordinate forming columns

and nodes with the same second coordinate as forming rows.

This gives rows of length 2d+ 1 and columns of length nd.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no

column contains packets that have the same target row.

O(d) steps.

2. We can use pipeling to permute every column, so that

afterwards every packet is in its target row. O(2d+ 2d)
steps.

3. Every packet is in its target row. Permute packets to their

right destinations. O(d) steps.
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Lemma 59

We can do offline permutation routing of (partial) permutations

in 2d steps on the hypercube.

Lemma 60

We can sort on the hypercube M(2, d) in O(d2) steps.

Lemma 61

We can do online permutation routing of permutations in O(d2)
steps on the hypercube.
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Bitonic Sorter Sd

Sd−1

S′d−1



ASCEND/DESCEND Programs

Algorithm 11 ASCEND(procedure oper)
1: for dim = 0 to d− 1

2: for all ā ∈ [2]d pardo

3: oper(ā, ā(dim),dim)

Algorithm 11 DESCEND(procedure oper)
1: for dim = d− 1 to 0

2: for all ā ∈ [2]d pardo

3: oper(ā, ā(dim),dim)

oper should only depend on the dimension and on values stored

in the respective processor pair (ā, ā(dim), V[ā], V[ā(dim)]).

oper should take constant time.
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Algorithm 11 oper(a,a′,dim, Ta, Ta′)
1: if adim, . . . , a0 = 0dim+1 then

2: Ta =min{Ta, Ta′}

Performing an ASCEND run with this operation computes the

minimum in processor 0.

We can sort on M(2, d) by using d DESCEND runs.

We can do offline permutation routing by using a DESCEND run

followed by an ASCEND run.
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We can perform an ASCEND/DESCEND run on a linear array

M(2d,1) in O(2d) steps.
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The CCC network is obtained from a hypercube by replacing

every node by a cycle of degree d.

ñ nodes {(`, x̄) | x̄ ∈ [2]d, ` ∈ [d]}
ñ edges {{(`, x̄), (`, x̄(`)} | x ∈ [2]d, ` ∈ [d]}

constand degree

PA 11 Some Networks

© Harald Räcke 221



Lemma 62

Let d = 2k. An ASCEND run of a hypercube M(2, d+ k) can be

simulated on CCC(d) in O(d) steps.
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The shuffle exchange network SE(d) is defined as follows

ñ nodes: V = [2]d

ñ edges:
E =

{
{xᾱ, ᾱx} | x ∈ [2], ᾱ ∈ [2]d−1

}
∪
{
{ᾱ0, ᾱ1} | ᾱ ∈ [2]d−1

}

constand degree

Edges of the first type are called shuffle edges. Edges of the

second type are called exchange edges
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Shuffle Exchange Networks

010 011

100 101

000 110 111001

1000 1001 1100 1101

0010 0011 0110 0111

11110000 0001 111010110100
0101 1010
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Lemma 63

We can perform an ASCEND run of M(2, d) on SE(d) in O(d)
steps.
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Simulations between Networks

For the following observations we need to make the definition of

parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write

register.

In one (synchronous) step each neighbour of a processor Pi can

write into Pi’s write register or can read from Pi’s read register.

Usually we assume that proper care has to be taken to avoid

concurrent reads and concurrent writes from/to the same

register.
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Simulations between Networks

Definition 64

A configuration Ci of processor Pi is the complete description of

the state of Pi including local memory, program counter,

read-register, write-register, etc.

Suppose a machine M is in configuration (C0, . . . , Cp−1),
performs t synchronous steps, and is then in configuration

C = (C′0, . . . , C′p−1).

C′i is called the t-th successor configuration of C for processor i.
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Simulations between Networks

Definition 65

Let C = (C0, . . . , Cp−1) a configuration of M. A machine M′ with

q ≥ p processors weakly simulates t steps of M with slowdown k
if

ñ in the beginning there are p non-empty processors sets

A0, . . . , Ap−1 ⊆ M′ so that all processors in Ai know Ci;
ñ after at most k · t steps of M′ there is a processor Q(i) that

knows the t-th successors configuration of C for processor

Pi.
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Simulations between Networks

Definition 66

M′ simulates M with slowdown k if

ñ M′ weakly simulates machine M with slowdown k
ñ and every processor in Ai knows the t-th successor

configuration of C for processor Pi.
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We have seen how to simulate an ASCEND/DESCEND run of the

hypercube M(2, d+ k) on CCC(d) with d = 2k in O(d) steps.

Hence, we can simulate d+ k steps (one ASCEND run) of the

hypercube in O(d) steps. This means slowdown O(1).
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Lemma 67

Suppose a network S with n processors can route any

permutation in time O(t(n)). Then S can simulate any constant

degree network M with at most n vertices with slowdown

O(t(n)).
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Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with ∆+ 1 colors, where ∆ = O(1) denotes

the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step

of M by routing ∆+ 1 permutations in S. This takes time t(n).

A processor of M is simulated by the same processor of S
throughout the simulation.
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Lemma 68

Suppose a network S with n processors can sort n numbers in

time O(t(n)). Then S can simulate any network M with at most

n vertices with slowdown O(t(n)).
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Lemma 69

There is a constant degree network on O(n1+ε) nodes that can

simulate any constant degree network with slowdown O(1).
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Suppose we allow concurrent reads, this means in every step all

neighbours of a processor Pi can read Pi’s read register.

Lemma 70

A constant degree network M that can simulate any n-node

network has slowdown O(logn) (independent of the size of M).
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We show the lemma for the following type of simulation.

ñ There are representative sets Ati for every step t that specify

which processors of M simulate processor Pi in step t
(know the configuration of Pi after the t-th step).

ñ The representative sets for different processors are disjoint.

ñ for all i ∈ {1, . . . , n} and steps t, Ati ≠ �.

This is a step-by-step simulation.
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Suppose processor Pi reads from processor Pji in step t.

Every processor Q ∈ M with Q ∈ At+1
i must have a path to a

processor Q′ ∈ Ati and to Q′′ ∈ Atji .

Let kt be the largest distance (maximized over all i, ji).

Then the simulation of step t takes time at least kt.

The slowdown is at least

k = 1
`

∑̀
t=1

kt
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We show

ñ The simulation of a step takes at least time γ logn, or

ñ the size of the representative sets shrinks by a lot

∑
i
|At+1
i | ≤ 1

nε
∑
i
|Ati|
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Suppose there is no pair (i, j) such that i reading from j
requires time γ logn.

ñ For every i the set Γ2k(Ai) contains a node from Aj.
ñ Hence, there must exist a ji such that Γ2k(Ai) contains at

most

|Cji| := |Ai| · c
2k

n− 1
≤ |Ai| · c

3k

n
.

processors from |Aji|

PA 11 Some Networks

© Harald Räcke 239



If we choose that i reads from ji we get

|A′i| ≤ |Cji| · ck

≤ ck · |Ai| · c
3k

n

= 1
n
|Ai| · c4k

Choosing k = Θ(logn) gives that this is at most |Ai|/nε.
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Let ` be the total number of steps and s be the number of short

steps when kt < γ logn.

In a step of time kt a representative set can at most increase by

ckt+1.

Let h` denote the number of representatives after step `.
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n ≤ h` ≤ h0

( 1
nε
)s ∏
t∈long

ckt+1 ≤ n
nεs

· c`+
∑
t kt

If
∑
t kt ≥ `( ε2 logc n− 1), we are done. Otw.

n ≤ n1−εs+` ε2

This gives s ≤ `/2 .

Hence, at most 50% of the steps are short.

PA 11 Some Networks

© Harald Räcke 242



Deterministic Online Routing

Lemma 71

A permutation on an n×n-mesh can be routed online in O(n)
steps.
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Deterministic Online Routing

Definition 72 (Oblivious Routing)

Specify a path-system W with a path Pu,v between u and v for

every pair {u,v} ∈ V × V .

A packet with source u and destination v moves along path Pu,v .
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Deterministic Online Routing

Definition 73 (Oblivious Routing)

Specify a path-system W with a path Pu,v between u and v for

every pair {u,v} ∈ V × V .

Definition 74 (node congestion)

For a given path-system the node congestion is the maximum

number of path that go through any node v ∈ V .

Definition 75 (edge congestion)

For a given path-system the edge congestion is the maximum

number of path that go through any edge e ∈ E.
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Deterministic Online Routing

Definition 76 (dilation)

For a given path system the dilation is the maximum length of a

path.
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Lemma 77

Any oblivious routing protocol requires at least max{Cf ,Df }
steps, where Cf and Df , are the congestion and dilation,

respectively, of the path-system used. (node congestion or edge

congestion depending on the communication model)

Lemma 78

Any reasonable oblivious routing protocol requires at most

O(Df · Cf ) steps (unbounded buffers).
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Theorem 79 (Borodin, Hopcroft)

For any path system W there exists a permutation π : V → V
and an edge e ∈ E such that at least Ω(

√
n/∆) of the paths go

through e.
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Let Wv = {Pv,u | u ∈ V}.

We say that an edge e is z-popular for v if at least z paths from

Wv contain e.
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For any node v there are many edges that are are quite popular

for v.

|V | × |E|-matrix A(z):

Av,e(z) =
{

1 e is z-popular for v
0 otherwise

Define

ñ

Av(z) =
∑
e
Av,e(z)

ñ

Ae(z) =
∑
v
Av,e(z)
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Lemma 80

Let z ≤ n−1
∆ .

For every node v ∈ V there exist at least n
2∆z edges that are z

popular for v. This means

Av(z) ≥ n
2∆z
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Lemma 81

There exists an edge e′ that is z-popular for at least z nodes

with z = Ω(√n∆).

∑
e
Ae(z) =

∑
v
Av(z) ≥ n2

2∆z

There must exist an edge e′

Ae′(z) ≥
⌈

n2

|E| · 2∆z

⌉
≥
⌈
n

2∆2z

⌉

where the last step follows from |E| ≤ ∆n.
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We choose z such that z = n
2∆2z (i.e., z = √n/(√2∆)).

This means e′ is dze-popular for dze nodes.

We can construct a permutation such that z paths go through e′.
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Deterministic oblivious routing may perform very poorly.

What happens if we have a random routing problem in a

butterfly?
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Suppose every source on level 0 has p packets, that are routed

to random destinations.

How many packets go over node v on level i?

From v we can reach 2d/2i different targets.

Hence,

Pr[packet goes over v] ≤ 2d−i

2d
= 1

2i
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Expected number of packets:

E[packets over v] = p · 2i · 1
2i
= p

since only p2i packets can reach v.

But this is trivial.
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What is the probability that at least r packets go through v.

Pr[at least r path through v] ≤
(
p · 2i

r

)
·
(

1
2i

)r
≤
(
p2i · e
r

)r
·
(

1
2i

)
=
(
pe
r

)r

Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r
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Pr[there exists a node v sucht that at least r path through v]

≤ d2d ·
(
pe
r

)r
Choose r as 2ep + (` + 1)d+ logd = O(p + logN), where N is

number of sources in BF(d).

Pr[exists node v with more than r paths over v] ≤ 1

N`
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Scheduling Packets

Assume that in every round a node may forward at most one

packet but may receive up to two.

We select a random rank Rp ∈ [k]. Whenever, we forward a

packet we choose the packet with smaller rank. Ties are broken

according to packet id.

Random Rank Protocol
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Definition 82 (Delay Sequence of length s)

ñ delay path W
ñ lengths `0, `1, . . . , `s , with `0 ≥ 1, `1, . . . , `s ≥ 0 lengths of

delay-free sub-paths

ñ collision nodes v0, v1, . . . , vs , vs+1

ñ collision packets P0, . . . , Ps
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Properties

ñ rank(P0) ≥ rank(P1) ≥ · · · ≥ rank(Ps)
ñ
∑s
i=0 `i = d

ñ if the routing takes d+ s steps than the delay sequence has

length s
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Definition 83 (Formal Delay Sequence)

ñ a path W of length d from a source to a target

ñ s integers `0 ≥ 1, `1, . . . , `s ≥ 0 and
∑s
i=0 `i = d

ñ nodes v0, . . . vs , vs+1 on W with vi being on level

d− `0 − · · · − `i−1

ñ s + 1 packets P0, . . . , Ps , where Pi is a packet with path

through vi and vi−1

ñ numbers Rs ≤ Rs−1 ≤ · · · ≤ R0
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We say a formal delay sequence is active if rank(Pi) = ki holds

for all i.

Let Ns be the number of formal delay sequences of length at

most s. Then

Pr[routing needs at least d+ s steps] ≤ Ns
ks+1
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Lemma 84

Ns ≤
(

2eC(s + k)
s + 1

)s+1

ñ there are N2 ways to choose W
ñ there are

(
s+d−1
s

)
ways to choose `i’s with

∑s
i=0 `i = d

ñ the collision nodes are fixed

ñ there are at most Cs+1 ways to choose the collision packets

where C is the node congestion

ñ there are at most
(
s+k
s+1

)
ways to choose

0 ≤ ks ≤ · · · ≤ k0 < k
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Hence the probability that the routing takes more than d+ s
steps is at most

N3 ·
(

2e · C · (s + k)
(s + 1)k

)s+1

We choose s = 8eC − 1+ (` + 3)d and k = s + 1. This gives that

the probability is at most 1
N` .
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ñ With probability 1− 1
N`1

the random routing problem has

congestion at most O(p + `1d).
ñ With probability 1− 1

N`2
the packet scheduling finishes in at

most O(C + `2d) steps.

Hence, with high probability routing random problems with p
packets per source in a butterfly requires only O(p + d) steps.

What do we do for arbitrary routing problems?

PA 11 Some Networks

© Harald Räcke 266



Valiants Trick

Where did the scheduling analysis use the butterfly?

We only used

ñ all routing paths are of the same length d
ñ there are a polynomial number of delay paths

Choose paths as follows:

ñ route from source to random destination on target level

ñ route to real target column (albeit on source level)

ñ route to target

All phases run in time O(p + d) with high probability.
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Valiants Trick

Multicommodity Flow Problem

ñ undirected (weighted) graph G = (V , E, c)
ñ commodities (si, ti), i ∈ {1, . . . , k}
ñ a multicommodity flow is a flow f : E × {1, . . . , k} → R+

ñ for all edges e ∈ E:
∑
i fi(e) ≤ c(e)

ñ for all nodes v ∈ V \ {si, ti}:∑
u:(u,v)∈E fi((u,v)) =

∑
w:(v,w)∈E fi((v,w))

Goal A (Maximum Multicommodity Flow)

maximize
∑
i
∑
e=(si,x)∈E fi(e)

Goal B (Maximum Concurrent Multicommodity Flow)

maximize mini
∑
e=(si,x)∈E fi(e)/di (throughput fraction), where

di is demand for commodity i
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Valiants Trick

A Balanced Multicommodity Flow Problem is a concurrent

multicommodity flow problem in which incoming and outgoing

flow is equal to

c(v) =
∑

e=(v,x)∈E
c(e)
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Valiants Trick

For a multicommodity flow S we assume that we have a

decomposition of the flow(s) into flow-paths.

We use C(S) to denote the congestion of the flow problem

(inverse of througput fraction), and D(S) the length of the

longest routing path.
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For a network G = (V , E, c) we define the characteristic flow

problem via

ñ demands du,v = c(u)c(v)
c(V)

Suppose the characteristic flow problem has a solution S with

C(S) ≤ F and D(S) ≤ F .
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Definition 85

A (randomized) oblivious routing scheme is given by a path

system P and a weight function w such that∑
p∈Ps,t

w(p) = 1
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Construct an oblivious routing scheme from S as follows:

ñ let fx,y be the flow between x and y in S
ñ

fx,y ≥ dx,y/C(S) ≥ dx,y/F = 1
F
c(x)c(y)
c(V)

ñ for p ∈ Px,y set w(p) = fp/fx,y

gives an oblivious routing scheme.
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Valiants Trick

We apply this routing scheme twice:

ñ first choose a path from Ps,v , where v is chosen uniformly

according to c(v)/c(V)
ñ then choose path according to Pv,t

If the input flow problem/packet routing problem is balanced

doing this randomization results in flow solution S (twice).

Hence, we have an oblivious scheme with congestion and

dilation at most 2F for (balanced inputs).
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Example: hypercube.
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Oblivious Routing for the Mesh

We can route any permutation on an n×n mesh in O(n) steps,

by x-y routing. Actually O(d) steps where d is the largest

distance between a source-target pair.

What happens if we do not have a permutation?

x −y routing may generate large congestion if some pairs have

a lot of packets.

Valiants trick may create a large dilation.
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Let for a multicommodity flow problem P Copt(P) be the

optimum congestion, and Dopt(P) be the optimum dilation (by

perhaps different flow solutions).

Lemma 86

There is an oblivious routing scheme for the mesh that obtains a

flow solution S with C(S) = O(Copt(P) logn) and

D(S) = O(Dopt(P)).
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Lemma 87

For any oblivious routing scheme on the mesh there is a demand

P such that routing P will give congestion Ω(logn · Copt).
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In the following we design oblivious algorithms that obtain close

to optimum congestion (no bounds on dilation).

We always assume that we route a flow (instead of packet

routing).

We can also assume this is a randomized path-selection scheme

that guarantees that the expected load on an edge is close to the

optimum congestion.

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 279



Hierarchical Decompositions

x

rx x

x x x z x x



Hierarchical Decompositions & Oblivious Routing

define multicommodity flow problem for every cluster:

ñ every border edge of a sub-cluster injects one unit and

distributes it evenly to all others



Formally

ñ cluster S partitioned into clusters S1, . . . , S`
ñ weight wS(v) of node v is total capacity of edges

connecting v to nodes in other sub-clusters or outside of S
ñ demand for pair (x,y) ∈ S × S

wS(x)wS(y)
wS(S)

ñ gives flow problem for every cluster

ñ if every flow problem can be solved with congestion C then

there is an oblivious routing scheme that always obtains

congestion

O(height(T) · C · Copt(P))
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Oblivious Routing Scheme
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Oblivious Routing Scheme — A Single Cluster S

Input:

Messages from sub-clusters have been routed to random

border-edges of corresponding sub-cluster.

1. forward messages to random intra sub-cluster edge

2. delete messages for which source and target are in S

3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times



Sparsest Cut

Definition 88

Given a multicommodity flow problem P with demands Di
between source-target pairs si, ti. A sparsest cut for P is a set S
that minimizes

Φ(S) = capacity(S, V \ S)
demand(S, V \ S) .

demand(S, V \ S) is the demand that crosses cut S.

capacity(S, V \ S) is the capacity across the cut.
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Sparsest Cut

Clearly,

1/Φmin ≤ Copt(P)

For single-commodity flows we have 1/Φmin = Copt(P).

In general we have

1
Φmin

≤ Copt(P) ≤ O(logn) · 1
Φmin

.

This is known as an approximate maxflow mincut theorem.
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LP Formulation

Maximum Concurrent Flow:

max λ
s.t. ∀i ∑

p∈Psi,ti fp ≥ Di
∀e ∈ E ∑

p:e∈p fp ≤ c(e)
fp, λ ≥ 0

Ps,t is the set of path that connect s and t.

The Dual:

min
∑
e c(e)`(e)

s.t. ∀p ∈ P ∑
e∈P `(e) ≥ disti∑
iDidisti ≥ 1

disti, `(e) ≥ 0
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Duality

Primal:
max ctx
s.t. Ax ≤ b

x ≥ 0

Dual:
min bty
s.t. Aty ≥ c

y ≥ 0
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Metric Embeddings

Definition 89

A metric (V ,d) is an `1-embeddable metric if there exists a

function f : V → Rm for some m such that

d(u,v) = ‖f(u)− f(v)‖1

Definition 90

A metric (V ,d) embeds into `1 with distortion α if there exists a

function f : V → Rm for some m such that

1
α
‖f(u)− f(v)‖1 ≤ d(u,v) ≤ ‖f(u)− f(v)‖
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Theorem 91

Any metric (V ,d) on |V | = n points is embeddable into `1 with

distortion O(logn).
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Theorem 92

For any flow problem P one can obtain at least a throughput of

Φmin/ logn, where Φmin denotes the sparsity of the sparsest cut.

In other words

Copt(P) ≤ O(logn)
1
Φmin

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 291



LP Formulation
The optimum throughput is given by

min
∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

or

Copt(P) =
∑
iDid(si, ti)∑

e=(u,v) c(e)d(u,v)

≤ α
∑
iDi · ‖f(si)− f(ti)‖∑

e=(u,v) c(e) · ‖f(u)− f(v)‖

= α
∑
iDi ·

∑
S γSχS(si, ti)∑

e=(u,v) c(e) ·
∑
S γSχS(u,v)

= α
∑
S γS

∑
iDiχS(si, ti)∑

S γS
∑
e=(u,v) c(e)χS(u,v)

≤ αmax
S

∑
iDiχS(si, ti)∑

e=(u,v) c(e)χS(u,v)
= α · 1

Φmin



Fréchet Embedding

Given a set A of points we define a mapping

f(x) := d(x,A)

The mapping f is contracting this means

‖f(x)− f(y)‖ ≤ d(x,y)
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Suppose we have a probability distribution p over sets

A1, . . . , Ak:

Then define f : V → Rk by

f(x)i : V = p(Ai) · d(x,Ai)

f is still contracting.
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We use a probability distribution over sets such that the

expected distance between x and y is at least

d(x,y)/O(logn)
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The Class NC

We say that a problem is efficiently parallelizable if we can

obtain a running time of O(logkn) while only using polynomially

many processors.

ñ independent of the type of PRAM that we choose

ñ for some range of processors there may be no speed-up at

all
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The Class NC

Definition 93

The class NC consists of all languages L such that membership

in L can be decided in time O(logkn) on a PRAM with O(nc)
processors, where k and c are independent of n.

Clearly, NC ⊆ NP
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Is P = NC?
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A problem L1, is NC-reducible to a problem L2 if

ñ there exists an algorithm A that takes any instance x1 for

L1 as input and outputs an instance x2 = f(x1) s.t.

x1 ∈ L1 a x2 ∈ L2

ñ A should run on a PRAM with polymomially many

processors in time O(logkn).

We write L1 ≤NC L2.
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Lemma 94

Suppose L1 ≤NC L2. If L2 ∈ NC then L1 ∈ NC.

Lemma 95

Suppose L1 ≤NC L2 and L2 ≤NC L3. Then L1 ≤NC L3.
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Definition 96

A language L is P-complete if

ñ L ∈ P

ñ ∀L′ ∈ P: L′ ≤NC L.

Lemma 97

Let L be P-complete. If L ∈ NC then NC = P.
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Circuit Value Problem (CVP)

Determine the value of a single output of a Boolean circuit

consisting of NOT gates and binary AND and OR gates for given

sets of inputs.
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C = 〈g1, . . . , gn〉

Each gi either is

ñ an input: gi = 0 or gi = 1

ñ an OR-gate: gi = gj ∨ gk
ñ an AND-gate: gi = gj ∧ gk
ñ a NOT-gate: gi = ¬gk

(j, k < i: this gives a DAG)
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Theorem 98

The Circuit Value Problem is P-complete.
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Given a Turing machine M for language L. We assume that

ñ head starts at position 1;

ñ only cells 1, . . . , T (n) are visited;

ñ result is written into cell 1;

ñ s states {q1, . . . , qs}; initial state q1;

ñ alphabet Σ = {b1, . . . , ba};
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We construct the circuit in T(n)+ 1 levels

ñ input of a level t ∈ {1, . . . , T (n)} are the outputs of level

t − 1

ñ all input gates for the circuit are in level 0;

ñ the output of level T(n) will just be one bit which will be the

result;
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The goal of each level t is to compute the configuration of the

Turing machine after step t

Compute the following values

ñ H(c, t) = is head at cell c after step t
ñ C(c, bi, t) = does cell c contain value bi after step t
ñ S(qk, t) = is machine in state qk after step t
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The inputs (level 0) of the circuit are

H(c,0) =
{

1 if c = 1

0 otw.

C(c, bi,0) =
{

1 if cell c initially contains bi
0 otw.

S(qk,0) =
{

1 if k = 1

0 otw.
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Let

IR = {(q, b) | δ(q, b) = (·, ·, R)}
and

IL = {(q, b) | δ(q, b) = (·, ·, L)}

H(c, t + 1) = H(c − 1, t)
∑

(qk,bj)∈IR
C(c − 1, bj , t)S(qk, t)

+H(c + 1, t)
∑

(qk,bj)∈IL
C(c + 1, bj , t)S(qk, t)

Here product is AND and sum is OR.
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Let

Ibj = {(q, b) | δ(q, b) = (·, bj , ·)}

C(c, bj , t+1) = H(c, t)C(c, bj , t)+H(c, t)
∑

(qk,b′)∈Ibj
C(c, b′, t)S(qk, t)
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Let

Iqk = {(q, b) | δq,b = (qk, ·, ·)}

S(k, t + 1) =
∑

c,(q,b)∈Ik
S(q, t) ·H(c, t) · C(c, b, t)
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We can generate all the gates in polylogaritmic time with a

polynomial number of processors.

The output of the circuit will be C(1, ·, T (n)).
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Monotone circuit value problem

Given a Boolean circuit constructed of AND and OR gates only,

and a specified set of inputs and their complements, determine

whether the value of the cirrcuit is 1.
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NOR circuit value problem

Given a Boolean circuit C = 〈g1, . . . , gn〉 such that gi is either an

input equal to 1 or gi = ¬(gj ∨ gk) for j, k < i, determine

whether the value of the circuit is 1.
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Fan-out-2 monotone circuit value problem

ñ binary AND and OR gates, fan-out at most 2

ñ fan out of each input at most 1

ñ gn is an output OR gate

ñ we are given input together with complements
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