Part II

Foundations

3 Introduction

Parallel Computing

3 Introduction

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

3 Introduction

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

3 Introduction

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

3 Introduction

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

3 Introduction

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

Processors do not work on a single problem.

3 Introduction

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

Processors do not work on a single problem.
Some processors may act in a malicous way.

Cost measures

How do we evaluate sequential algorithms?

- time efficiency

Cost measures

How do we evaluate sequential algorithms?

- time efficiency
- space utilization

Cost measures

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption

Cost measures

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability

Cost measures

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- ...

Cost measures

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- ...

Asymptotic bounds (e.g., for running time) often give a good indication on the algorithms performance on a wide variety of machines.

Cost measures

How do we evaluate parallel algorithms?

- time efficiency

Cost measures

How do we evaluate parallel algorithms?

- time efficiency
- space utilization

Cost measures

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption

Cost measures

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability

Cost measures

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement

Cost measures

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement
- ...

Cost measures

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement
- ...

Problems

- performance (e.g. runtime) depends on problem size n and on number of processors p

Cost measures

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement
- ...

Problems

- performance (e.g. runtime) depends on problem size n and on number of processors p
- statements usually only hold for restricted types of parallel machine as parallel computers may have vastly different characteristics (in particular w.r.t. communication)

Speedup

Suppose a problem P has sequential complexity $T^{*}(n)$, i.e., there is no algorithm that solves P in time $o\left(T^{*}(n)\right)$.

Speedup

Suppose a problem P has sequential complexity $T^{*}(n)$, i.e., there is no algorithm that solves P in time $o\left(T^{*}(n)\right)$.

Definition 1
The speedup $S_{p}(n)$ of a parallel algorithm A that requires time
$T_{p}(n)$ for solving P with p processors is defined as

$$
S_{p}(n)=\frac{T^{*}(n)}{T_{p}(n)} .
$$

Speedup

Suppose a problem P has sequential complexity $T^{*}(n)$, i.e., there is no algorithm that solves P in time $o\left(T^{*}(n)\right)$.

Definition 1
The speedup $S_{p}(n)$ of a parallel algorithm A that requires time
$T_{p}(n)$ for solving P with p processors is defined as

$$
S_{p}(n)=\frac{T^{*}(n)}{T_{p}(n)} .
$$

Clearly, $S_{p}(n) \leq p$. Goal: obtain $S_{p}(n) \approx p$.

Speedup

Suppose a problem P has sequential complexity $T^{*}(n)$, i.e., there is no algorithm that solves P in time $o\left(T^{*}(n)\right)$.

Definition 1

The speedup $S_{p}(n)$ of a parallel algorithm A that requires time
$T_{p}(n)$ for solving P with p processors is defined as

$$
S_{p}(n)=\frac{T^{*}(n)}{T_{p}(n)}
$$

Clearly, $S_{p}(n) \leq p$. Goal: obtain $S_{p}(n) \approx p$.

It is common to replace $T^{*}(n)$ by the time bound of the best known sequential algorithm for P !

Efficiency

Definition 2

The efficiency of a parallel algorithm A that requires time $T_{p}(n)$ when using p processors on a problem of size n is

$$
E_{p}(n)=\frac{T_{1}(n)}{p T_{p}(n)}
$$

Efficiency

Definition 2

The efficiency of a parallel algorithm A that requires time $T_{p}(n)$ when using p processors on a problem of size n is

$$
E_{p}(n)=\frac{T_{1}(n)}{p T_{p}(n)}
$$

$E_{p}(n) \approx 1$ indicates that the algorithm is running roughly p times faster with p processors than with one processor.

Efficiency

Definition 2

The efficiency of a parallel algorithm A that requires time $T_{p}(n)$ when using p processors on a problem of size n is

$$
E_{p}(n)=\frac{T_{1}(n)}{p T_{p}(n)}
$$

$E_{p}(n) \approx 1$ indicates that the algorithm is running roughly p times faster with p processors than with one processor.

Note that $E_{p}(n) \leq \frac{T_{1}(n)}{p T_{\infty}(n)}$. Hence, the efficiency goes down rapidly if $p \geq T_{1}(n) / T_{\infty}(n)$.

Efficiency

Definition 2

The efficiency of a parallel algorithm A that requires time $T_{p}(n)$ when using p processors on a problem of size n is

$$
E_{p}(n)=\frac{T_{1}(n)}{p T_{p}(n)}
$$

$E_{p}(n) \approx 1$ indicates that the algorithm is running roughly p times faster with p processors than with one processor.

Note that $E_{p}(n) \leq \frac{T_{1}(n)}{p T_{\infty}(n)}$. Hence, the efficiency goes down rapidly if $p \geq T_{1}(n) / T_{\infty}(n)$.

Disadvantage: cost-measure does not relate to the optimum sequential algorithm.

Parallel Models－Requirements

Parallel Models - Requirements

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Parallel Models - Requirements

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Parallel Models - Requirements

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily implementable on a parallel machine.

Parallel Models - Requirements

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful performance estimates.

Parallel Models - Requirements

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful performance estimates.

A real satisfactory model does not exist!

DAG model - computation graph

- nodes represent operations (single instructions or larger blocks)

DAG model - computation graph

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)

DAG model - computation graph

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants

DAG model - computation graph

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled

DAG model - computation graph

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent

DAG model - computation graph

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent
- scheduling is not defined

DAG model - computation graph

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent
- scheduling is not defined

Often used for automatically parallelizing numerical computations.

Example: Addition

Here, vertices without incoming edges correspond to input data. The graph can be viewed as a data flow graph.

DAG model - computation graph

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_{v} and a processor p_{v} to every node.

DAG model - computation graph

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_{v} and a processor p_{v} to every node.

Definition 3

A scheduling of a DAG $G=(V, E)$ on p processors is an assignment of pairs (t_{v}, p_{v}) to every internal node $v \in V$, s.t.,

- $p_{v} \in\{1, \ldots, p\} ; t_{v} \in\{1, \ldots, T\}$

DAG model - computation graph

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_{v} and a processor p_{v} to every node.

Definition 3

A scheduling of a DAG $G=(V, E)$ on p processors is an assignment of pairs $\left(t_{v}, p_{v}\right)$ to every internal node $v \in V$, s.t.,

- $p_{v} \in\{1, \ldots, p\} ; t_{v} \in\{1, \ldots, T\}$
- $t_{u}=t_{v} \Rightarrow p_{u} \neq p_{v}$

DAG model - computation graph

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_{v} and a processor p_{v} to every node.

Definition 3

A scheduling of a DAG $G=(V, E)$ on p processors is an assignment of pairs $\left(t_{v}, p_{v}\right)$ to every internal node $v \in V$, s.t.,

- $p_{v} \in\{1, \ldots, p\} ; t_{v} \in\{1, \ldots, T\}$
- $t_{u}=t_{v} \Rightarrow p_{u} \neq p_{v}$
- $(u, v) \in E \Rightarrow t_{v} \geq t_{u}+1$

DAG model - computation graph

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_{v} and a processor p_{v} to every node.

Definition 3

A scheduling of a DAG $G=(V, E)$ on p processors is an assignment of pairs (t_{v}, p_{v}) to every internal node $v \in V$, s.t.,

- $p_{v} \in\{1, \ldots, p\} ; t_{v} \in\{1, \ldots, T\}$
- $t_{u}=t_{v} \Rightarrow p_{u} \neq p_{v}$
- $(u, v) \in E \Rightarrow t_{v} \geq t_{u}+1$
where a non-internal node x (an input node) has $t_{x}=0$. T is the length of the schedule.

DAG model - computation graph

DAG model - computation graph

The parallel complexity of a DAG is defined as

$$
T_{p}(n)=\min _{\text {schedule } S}\{T(S)\}
$$

DAG model - computation graph

The parallel complexity of a DAG is defined as

$$
T_{p}(n)=\min _{\text {schedule } S}\{T(S)\}
$$

$T_{1}(n)$: \#internal nodes in DAG $T_{\infty}(n)$: diameter of DAG

DAG model - computation graph

The parallel complexity of a DAG is defined as

$$
T_{p}(n)=\min _{\text {schedule } S}\{T(S)\}
$$

$T_{1}(n)$: \#internal nodes in DAG $T_{\infty}(n)$: diameter of DAG

Clearly,

$$
\begin{aligned}
& T_{p}(n) \geq T_{\infty}(n) \\
& T_{p}(n) \geq T_{1}(n) / p
\end{aligned}
$$

DAG model - computation graph

The parallel complexity of a DAG is defined as

$$
T_{p}(n)=\min _{\text {schedule } S}\{T(S)\}
$$

$T_{1}(n)$: \#internal nodes in DAG
$T_{\infty}(n)$: diameter of DAG

Clearly,

$$
\begin{aligned}
& T_{p}(n) \geq T_{\infty}(n) \\
& T_{p}(n) \geq T_{1}(n) / p
\end{aligned}
$$

Lemma 4
A schedule with length $\mathcal{O}\left(T_{1}(n) / p+T_{\infty}(n)\right)$ can be found easily.

DAG model - computation graph

The parallel complexity of a DAG is defined as

$$
T_{p}(n)=\min _{\text {schedule } S}\{T(S)\}
$$

$T_{1}(n)$: \#internal nodes in DAG
$T_{\infty}(n)$: diameter of DAG

Clearly,

$$
\begin{aligned}
& T_{p}(n) \geq T_{\infty}(n) \\
& T_{p}(n) \geq T_{1}(n) / p
\end{aligned}
$$

Lemma 4
A schedule with length $\mathcal{O}\left(T_{1}(n) / p+T_{\infty}(n)\right)$ can be found easily.
Lemma 5
Finding an optimal schedule is in general NP-complete.

Note that the DAG model as defined is a non-uniform model of computation.

Note that the DAG model as defined is a non-uniform model of computation.

In principle, there could be a different DAG for every input size n.

Note that the DAG model as defined is a non-uniform model of computation.

In principle, there could be a different DAG for every input size n.

An algorithm (e.g. for a RAM) must work for every input size and must be of finite description length.

Note that the DAG model as defined is a non-uniform model of computation.

In principle, there could be a different DAG for every input size n.

An algorithm (e.g. for a RAM) must work for every input size and must be of finite description length.

Hence, specifying a different DAG for every n has more expressive power.

Note that the DAG model as defined is a non-uniform model of computation.

In principle, there could be a different DAG for every input size n.

An algorithm (e.g. for a RAM) must work for every input size and must be of finite description length.

Hence, specifying a different DAG for every n has more expressive power.

Also, this is not really a complete model, as the operations allowed in a DAG node are not clearly defined.

PRAM Model

PRAM Model

All processors are synchronized.

PRAM Model

All processors are synchronized.
In every round a processor can:

- read a register from global memory into local memory

PRAM Model

All processors are synchronized.
In every round a processor can:

- read a register from global memory into local memory
- do a local computation à la RAM

PRAM Model

All processors are synchronized.
In every round a processor can:

- read a register from global memory into local memory
- do a local computation à la RAM
- write a local register into global memory

PRAM Model

Every processor executes the same program.

PRAM Model

Every processor executes the same program.
However, the program has access to two special variables:

- p : total number of processors

PRAM Model

Every processor executes the same program.
However, the program has access to two special variables:

- p : total number of processors
- $i d \in\{1, \ldots, p\}$: the id of the current processor

PRAM Model

Every processor executes the same program.
However, the program has access to two special variables:

- p : total number of processors
- $i d \in\{1, \ldots, p\}$: the id of the current processor

The following (stupid) program copies the content of the global register $x[1]$ to registers $x[2] \ldots x[p]$.

```
Algorithm 1 copy
1: if id \(=1\) then round \(\leftarrow 1\)
2: while round \(\leq p\) and \(i d=\) round do
3: \(\quad x[i d+1] \leftarrow x[i d]\)
4: \(\quad\) round \(\leftarrow\) round +1
```


PRAM Model

- processors can effectively execute different code because of branching according to id

PRAM Model

- processors can effectively execute different code because of branching according to id
- however, not arbitrarily; still uniform model of computation

PRAM Model

- processors can effectively execute different code because of branching according to id
- however, not arbitrarily; still uniform model of computation

Often it is easier to explicitly define which parts of a program are executed in parallel:

```
Algorithm 2 sum
1:// computes sum of x[1]\ldotsx[p]
2: // red part is executed only by processor 1
3: r\leftarrow1
4: while 2r
5: for id mod 2r}=1\mathrm{ pardo
6: // only executed by processors whose id matches
7: }\quadx[id]=x[id]+x[id+2\mp@subsup{2}{}{r-1}
8: }\quadr\leftarrowr+
9: return x[1]
```


Different Types of PRAMs

Simultaneous Access to Shared Memory:

- EREW PRAM:
simultaneous access is not allowed

Different Types of PRAMs

Simultaneous Access to Shared Memory:

- EREW PRAM: simultaneous access is not allowed
- CREW PRAM:
concurrent read accesses to the same location are allowed; write accesses have to be exclusive

Different Types of PRAMs

Simultaneous Access to Shared Memory:

- EREW PRAM: simultaneous access is not allowed
- CREW PRAM:
concurrent read accesses to the same location are allowed; write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed

Different Types of PRAMs

Simultaneous Access to Shared Memory:

- EREW PRAM: simultaneous access is not allowed
- CREW PRAM: concurrent read accesses to the same location are allowed; write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed
- commom CRCW PRAM all processors writing to $x[i]$ must write same value

Different Types of PRAMs

Simultaneous Access to Shared Memory:

- EREW PRAM:
simultaneous access is not allowed
- CREW PRAM:
concurrent read accesses to the same location are allowed; write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed
- commom CRCW PRAM all processors writing to $x[i]$ must write same value
- arbitrary CRCW PRAM values may be different; an arbitrary processor succeeds

Different Types of PRAMs

Simultaneous Access to Shared Memory:

- EREW PRAM:
simultaneous access is not allowed
- CREW PRAM:
concurrent read accesses to the same location are allowed; write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed
- commom CRCW PRAM all processors writing to $x[i]$ must write same value
- arbitrary CRCW PRAM values may be different; an arbitrary processor succeeds
- priority CRCW PRAM
values may be different; processor with smallest id succeeds

```
Algorithm 3 sum
    1: // computes sum of \(x[1] \ldots x[p]\)
    2: \(r \leftarrow 1\)
    3: while \(2^{r} \leq p\) do
    4: \(\quad\) for \(i d \bmod 2^{r}=1\) pardo
    5: \(\quad x[i d]=x[i d]+x\left[i d+2^{r-1}\right]\)
6: \(\quad r \leftarrow r+1\)
7: return \(x\) [1]
```

$$
\begin{aligned}
& \text { Algorithm } 3 \text { sum } \\
& \hline 1: / / \text { computes sum of } x[1] \ldots x[p] \\
& \text { 2: } r \leftarrow 1 \\
& \text { 3: while } 2^{r} \leq p \text { do } \\
& \text { 4: } \quad \text { for id } \bmod 2^{r}=1 \text { pardo } \\
& \text { 5: } \quad x[i d]=x[\text { id }]+x\left[\text { id }+2^{r-1}\right] \\
& \text { 6: } \quad r \leftarrow r+1 \\
& \text { 7: } \\
& \text { return } x[1]
\end{aligned}
$$

The above is an EREW PRAM algorithm.

$$
\begin{aligned}
& \text { Algorithm } 3 \text { sum } \\
& \hline 1: / / \text { computes sum of } x[1] \ldots x[p] \\
& 2: r \leftarrow 1 \\
& \text { 3: while } 2^{r} \leq p \text { do } \\
& \text { 4: } \quad \text { for id } \bmod 2^{r}=1 \text { pardo } \\
& \text { 5: } \quad x[i d]=x[\text { id }]+x\left[\text { id }+2^{r-1}\right] \\
& \text { 6: } \quad r \leftarrow r+1 \\
& \text { 7: } \\
& \text { return } x[1]
\end{aligned}
$$

The above is an EREW PRAM algorithm.
On a CREW PRAM we could replace Line 4 by for $1 \leq i d \leq p$ pardo

PRAM Model - remarks

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating $x[i]$ is proportional to the bit-length of the largest number that is ever being stored in $x[i]$)

PRAM Model - remarks

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating $x[i]$ is proportional to the bit-length of the largest number that is ever being stored in $x[i]$)
- in this lecture: uniform cost model but we are not exploiting the model

PRAM Model - remarks

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating $x[i]$ is proportional to the bit-length of the largest number that is ever being stored in $x[i]$)
- in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist

PRAM Model - remarks

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating $x[i]$ is proportional to the bit-length of the largest number that is ever being stored in $x[i]$)
- in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist
- global synchronziation is very unrealistic; in real parallel machines a global synchronization is very costly

PRAM Model - remarks

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating $x[i]$ is proportional to the bit-length of the largest number that is ever being stored in $x[i]$)
- in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist
- global synchronziation is very unrealistic; in real parallel machines a global synchronization is very costly
- model is good for understanding basic parallel mechanisms/techniques but not for algorithm development

PRAM Model - remarks

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating $x[i]$ is proportional to the bit-length of the largest number that is ever being stored in $x[i]$)
- in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist
- global synchronziation is very unrealistic; in real parallel machines a global synchronization is very costly
- model is good for understanding basic parallel mechanisms/techniques but not for algorithm development
- model is good for lower bounds

Network of Workstations - NOWs

- interconnection network represented by a graph $G=(V, E)$

Network of Workstations - NOWs

- interconnection network represented by a graph $G=(V, E)$
- each $v \in V$ represents a processor

Network of Workstations - NOWs

- interconnection network represented by a graph $G=(V, E)$
- each $v \in V$ represents a processor
- an edge $\{u, v\} \in E$ represents a two-way communication link between processors u and v

Network of Workstations - NOWs

- interconnection network represented by a graph $G=(V, E)$
- each $v \in V$ represents a processor
- an edge $\{u, v\} \in E$ represents a two-way communication link between processors u and v
- network is asynchronous

Network of Workstations - NOWs

- interconnection network represented by a graph $G=(V, E)$
- each $v \in V$ represents a processor
- an edge $\{u, v\} \in E$ represents a two-way communication link between processors u and v
- network is asynchronous
- all coordination/communiation has to be done by explicit message passing

Typical Topologies

Network of Workstations - NOWs

Network of Workstations - NOWs

Computing the sum on a d-dimensional hypercube. Note that $x[0] \ldots x\left[2^{d}-1\right]$ are stored at the individual nodes.

Network of Workstations - NOWs

Computing the sum on a d-dimensional hypercube. Note that $x[0] \ldots x\left[2^{d}-1\right]$ are stored at the individual nodes.

Processors are numbered consecutively starting from 0

Network of Workstations - NOWs

Computing the sum on a d-dimensional hypercube. Note that $x[0] \ldots x\left[2^{d}-1\right]$ are stored at the individual nodes.

Processors are numbered consecutively starting from 0

```
Algorithm 4 sum
    1:// computes sum of }x[0]\ldotsx[\mp@subsup{2}{}{d}-1
    2: }r\leftarrow
    3: while 2}\mp@subsup{2}{}{r}\leq\mp@subsup{2}{}{d}\mathrm{ do // p= 2d
    4: if id mod 2r}=0\mathrm{ then
    5: temp}\leftarrow\mathrm{ receive (id + 2r-1)
    6: }\quadx[id]=x[id]+\mathrm{ temp
    7: if id mod 2
    8: }\quad\operatorname{send}(x[id],id - 2 r-1
    9:
10: if id = 0 then return }x\mathrm{ [id]
```


Network of Workstations - NOWs

Remarks

- One has to ensure that at any point in time there is at most one active communication along a link

Network of Workstations - NOWs

Remarks

- One has to ensure that at any point in time there is at most one active communication along a link
- There also exist synchronized versions of the model, where in every round each link can be used once for communication

Network of Workstations - NOWs

Remarks

- One has to ensure that at any point in time there is at most one active communication along a link
- There also exist synchronized versions of the model, where in every round each link can be used once for communication
- In particular the asynchronous model is quite realistic

Network of Workstations - NOWs

Remarks

- One has to ensure that at any point in time there is at most one active communication along a link
- There also exist synchronized versions of the model, where in every round each link can be used once for communication
- In particular the asynchronous model is quite realistic
- Difficult to develop and analyze algorithms as a lot of low level communication has to be dealt with

Network of Workstations - NOWs

Remarks

- One has to ensure that at any point in time there is at most one active communication along a link
- There also exist synchronized versions of the model, where in every round each link can be used once for communication
- In particular the asynchronous model is quite realistic
- Difficult to develop and analyze algorithms as a lot of low level communication has to be dealt with
- Results only hold for one specific topology and cannot be generalized easily

Performance of PRAM algorithms

Performance of PRAM algorithms

Suppose that we can solve an instance of a problem with size n with $P(n)$ processors and time $T(n)$.

Performance of PRAM algorithms

Suppose that we can solve an instance of a problem with size n with $P(n)$ processors and time $T(n)$.

We call $C(n)=T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

Performance of PRAM algorithms

Suppose that we can solve an instance of a problem with size n with $P(n)$ processors and time $T(n)$.

We call $C(n)=T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

The following statements are equivalent

- $P(n)$ processors and time $\mathcal{O}(T(n))$

Performance of PRAM algorithms

Suppose that we can solve an instance of a problem with size n with $P(n)$ processors and time $T(n)$.

We call $C(n)=T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

The following statements are equivalent

- $P(n)$ processors and time $\mathcal{O}(T(n))$
- $\mathcal{O}(C(n))$ cost and time $\mathcal{O}(T(n))$

Performance of PRAM algorithms

Suppose that we can solve an instance of a problem with size n with $P(n)$ processors and time $T(n)$.

We call $C(n)=T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

The following statements are equivalent

- $P(n)$ processors and time $\mathcal{O}(T(n))$
- $\mathcal{O}(C(n))$ cost and time $\mathcal{O}(T(n))$
- $\mathcal{O}(C(n) / p)$ time for any number $p \leq P(n)$ processors

Performance of PRAM algorithms

Suppose that we can solve an instance of a problem with size n with $P(n)$ processors and time $T(n)$.

We call $C(n)=T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

The following statements are equivalent

- $P(n)$ processors and time $\mathcal{O}(T(n))$
- $\mathcal{O}(C(n))$ cost and time $\mathcal{O}(T(n))$
- $\mathcal{O}(C(n) / p)$ time for any number $p \leq P(n)$ processors
- $\mathcal{O}(C(n) / p+T(n))$ for any number p of processors

Performance of PRAM algorithms

Performance of PRAM algorithms

Suppose we have a PRAM algorithm that takes time $T(n)$ and work $W(n)$, where work is the total number of operations.

Performance of PRAM algorithms

Suppose we have a PRAM algorithm that takes time $T(n)$ and work $W(n)$, where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$
\lfloor W(n) / p\rfloor+T(n)
$$

parallel steps on p processors.

Performance of PRAM algorithms

Suppose we have a PRAM algorithm that takes time $T(n)$ and work $W(n)$, where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$
\lfloor W(n) / p\rfloor+T(n)
$$

parallel steps on p processors.

Idea:

- $W_{i}(n)$ denotes operations in parallel step $i, 1 \leq i \leq T(n)$

Performance of PRAM algorithms

Suppose we have a PRAM algorithm that takes time $T(n)$ and work $W(n)$, where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$
\lfloor W(n) / p\rfloor+T(n)
$$

parallel steps on p processors.

Idea:

- $W_{i}(n)$ denotes operations in parallel step $i, 1 \leq i \leq T(n)$
- simulate each step in $\left\lceil W_{i}(n) / p\right\rceil$ parallel steps

Performance of PRAM algorithms

Suppose we have a PRAM algorithm that takes time $T(n)$ and work $W(n)$, where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$
\lfloor W(n) / p\rfloor+T(n)
$$

parallel steps on p processors.

Idea:

- $W_{i}(n)$ denotes operations in parallel step $i, 1 \leq i \leq T(n)$
- simulate each step in $\left\lceil W_{i}(n) / p\right\rceil$ parallel steps
- then we have

$$
\sum_{i}\left\lceil W_{i}(n) / p\right\rceil \leq \sum_{i}\left(\left\lfloor W_{i}(n) / p\right\rfloor+1\right) \leq\lfloor W(n) / p\rfloor+T(n)
$$

Performance of PRAM algorithms

design algorithms for an arbitrary number of processors;

 koon trial time and winelle İmus
Performance of PRAM algorithms

Why nearly always?

Performance of PRAM algorithms

Why nearly always?
We need to assign processors to operations.

- every processor p_{i} needs to know whether it should be active

Performance of PRAM algorithms

Why nearly always?
We need to assign processors to operations.

- every processor p_{i} needs to know whether it should be active
- in case it is active it needs to know which operations to perform

Performance of PRAM algorithms

Why nearly always?
We need to assign processors to operations.

- every processor p_{i} needs to know whether it should be active
- in case it is active it needs to know which operations to perform
design algorithms for an arbitrary number of processors; keep total time and work low

Optimal PRAM algorithms

Optimal PRAM algorithms

Suppose the optimal sequential running time for a problem is $T^{*}(n)$.

Optimal PRAM algorithms

Suppose the optimal sequential running time for a problem is $T^{*}(n)$.

We call a PRAM algorithm for the same problem work optimal if its work $W(n)$ fulfills

$$
W(n)=\Theta\left(T^{*}(n)\right)
$$

Optimal PRAM algorithms

Suppose the optimal sequential running time for a problem is $T^{*}(n)$.

We call a PRAM algorithm for the same problem work optimal if its work $W(n)$ fulfills

$$
W(n)=\Theta\left(T^{*}(n)\right)
$$

If such an algorithm has running time $T(n)$ it has speedup
$S_{p}(n)$

Optimal PRAM algorithms

Suppose the optimal sequential running time for a problem is $T^{*}(n)$.

We call a PRAM algorithm for the same problem work optimal if its work $W(n)$ fulfills

$$
W(n)=\Theta\left(T^{*}(n)\right)
$$

If such an algorithm has running time $T(n)$ it has speedup

$$
S_{p}(n)=\Omega\left(\frac{T^{*}(n)}{T^{*}(n) / p+T(n)}\right)
$$

Optimal PRAM algorithms

Suppose the optimal sequential running time for a problem is $T^{*}(n)$.

We call a PRAM algorithm for the same problem work optimal if its work $W(n)$ fulfills

$$
W(n)=\Theta\left(T^{*}(n)\right)
$$

If such an algorithm has running time $T(n)$ it has speedup

$$
S_{p}(n)=\Omega\left(\frac{T^{*}(n)}{T^{*}(n) / p+T(n)}\right)=\Omega\left(\frac{p T^{*}(n)}{T^{*}(n)+p T(n)}\right)
$$

Optimal PRAM algorithms

Suppose the optimal sequential running time for a problem is $T^{*}(n)$.

We call a PRAM algorithm for the same problem work optimal if its work $W(n)$ fulfills

$$
W(n)=\Theta\left(T^{*}(n)\right)
$$

If such an algorithm has running time $T(n)$ it has speedup

$$
S_{p}(n)=\Omega\left(\frac{T^{*}(n)}{T^{*}(n) / p+T(n)}\right)=\Omega\left(\frac{p T^{*}(n)}{T^{*}(n)+p T(n)}\right)=\Omega(p)
$$

Optimal PRAM algorithms

Suppose the optimal sequential running time for a problem is $T^{*}(n)$.

We call a PRAM algorithm for the same problem work optimal if its work $W(n)$ fulfills

$$
W(n)=\Theta\left(T^{*}(n)\right)
$$

If such an algorithm has running time $T(n)$ it has speedup

$$
S_{p}(n)=\Omega\left(\frac{T^{*}(n)}{T^{*}(n) / p+T(n)}\right)=\Omega\left(\frac{p T^{*}(n)}{T^{*}(n)+p T(n)}\right)=\Omega(p)
$$

$$
\text { for } p=\mathcal{O}\left(T^{*}(n) / T(n)\right)
$$

This means by improving the time $T(n)$, (while using same work) we improve the range of p, for which we obtain optimal speedup.

This means by improving the time $T(n)$, (while using same work) we improve the range of p, for which we obtain optimal speedup.

We call an algorithm worktime (WT) optimal if $T(n)$ cannot be asymptotically improved by any work optimal algorithm.

Example

Example

Algorithm for computing the sum has work $W(n)=\mathcal{O}(n)$. optimal

Example

Algorithm for computing the sum has work $W(n)=\mathcal{O}(n)$. optimal
$T(n)=\mathcal{O}(\log n)$. Hence, we achieve an optimal speedup for $p=\mathcal{O}(n / \log n)$.

Example

Algorithm for computing the sum has work $W(n)=\mathcal{O}(n)$. optimal
$T(n)=\mathcal{O}(\log n)$. Hence, we achieve an optimal speedup for $p=\mathcal{O}(n / \log n)$.

One can show that any CREW PRAM requires $\Omega(\log n)$ time to compute the sum.

Communication Cost

worst-case traffic between the local memory of a processor and

Important criterion as communication is usually a major matalamanl.

Communication Cost

When we differentiate between local and global memory we can analyze communication cost.

Communication Cost

When we differentiate between local and global memory we can analyze communication cost.

We define the communication cost of a PRAM algorithm as the worst-case traffic between the local memory of a processor and the global shared memory.

Communication Cost

When we differentiate between local and global memory we can analyze communication cost.

We define the communication cost of a PRAM algorithm as the worst-case traffic between the local memory of a processor and the global shared memory.

Important criterion as communication is usually a major bottleneck.

Communication Cost

$$
\begin{aligned}
& \text { Algorithm } 5 \text { MatrixMult }(A, B, n) \\
& \hline \text { 1: Input: } n \times n \text { matrix } A \text { and } B ; n=2^{k} \\
& \text { 2: Output: } C=A B \\
& \text { 3: for } 1 \leq i, j, \ell \leq n \text { pardo } \\
& \text { 4: } X[i, j, \ell] \leftarrow A[i, \ell] \cdot B[\ell, j] \\
& \text { 5: for } r \leftarrow 1 \text { to } \log n \\
& \text { 6: } \quad \text { for } 1 \leq i, j \leq n ; \ell \bmod 2^{r}=1 \text { pardo } \\
& \text { 7: } \quad X[i, j, \ell] \leftarrow X[i, j, \ell]+X\left[i, j, \ell+2^{r-1}\right] \\
& \text { 8: } C[i, j] \leftarrow X[i, j, \ell]
\end{aligned}
$$

Communication Cost

```
Algorithm 5 MatrixMult \((A, B, n)\)
    1: Input: \(n \times n\) matrix \(A\) and \(B ; n=2^{k}\)
    2: Output: \(C=A B\)
    3: for \(1 \leq i, j, \ell \leq n\) pardo
    4: \(\quad X[i, j, \ell] \leftarrow A[i, \ell] \cdot B[\ell, j]\)
    5: for \(r \leftarrow 1\) to \(\log n\)
    6: \(\quad\) for \(1 \leq i, j \leq n ; \ell \bmod 2^{r}=1\) pardo
    7: \(\quad X[i, j, \ell] \leftarrow X[i, j, \ell]+X\left[i, j, \ell+2^{r-1}\right]\)
    8: \(C[i, j] \leftarrow X[i, j, \ell]\)
```

On n^{3} processors this algorithm runs in time $\mathcal{O}(\log n)$. It uses n^{3} multiplications and $\mathcal{O}\left(n^{3}\right)$ additions.

What happens if we have n processors?

Phase 1

What happens if we have n processors?

Phase 1

p_{i} computes $X[i, j, \ell]=A[i, \ell] \cdot B[\ell, j]$ for all $1 \leq j, \ell \leq n$

What happens if we have n processors?

Phase 1

p_{i} computes $X[i, j, \ell]=A[i, \ell] \cdot B[\ell, j]$ for all $1 \leq j, \ell \leq n$
n^{2} time; n^{2} communication for every processor

What happens if we have n processors?

Phase 1

p_{i} computes $X[i, j, \ell]=A[i, \ell] \cdot B[\ell, j]$ for all $1 \leq j, \ell \leq n$
n^{2} time; n^{2} communication for every processor

Phase 2 (round r)

What happens if we have n processors?

Phase 1

p_{i} computes $X[i, j, \ell]=A[i, \ell] \cdot B[\ell, j]$ for all $1 \leq j, \ell \leq n$
n^{2} time; n^{2} communication for every processor

Phase 2 (round \boldsymbol{r})

p_{i} updates $X[i, j, \ell]$ for all $1 \leq j \leq n ; 1 \leq \ell \bmod 2^{r}=1$

What happens if we have n processors?

Phase 1

p_{i} computes $X[i, j, \ell]=A[i, \ell] \cdot B[\ell, j]$ for all $1 \leq j, \ell \leq n$
n^{2} time; n^{2} communication for every processor

Phase 2 (round r)

p_{i} updates $X[i, j, \ell]$ for all $1 \leq j \leq n ; 1 \leq \ell \bmod 2^{r}=1$
$n \cdot n / 2^{r}$ time; no communication

What happens if we have n processors?

Phase 1

p_{i} computes $X[i, j, \ell]=A[i, \ell] \cdot B[\ell, j]$ for all $1 \leq j, \ell \leq n$
n^{2} time; n^{2} communication for every processor

Phase 2 (round r)

p_{i} updates $X[i, j, \ell]$ for all $1 \leq j \leq n ; 1 \leq \ell \bmod 2^{r}=1$
$n \cdot n / 2^{r}$ time; no communication

Phase 3

What happens if we have n processors?

Phase 1

p_{i} computes $X[i, j, \ell]=A[i, \ell] \cdot B[\ell, j]$ for all $1 \leq j, \ell \leq n$
n^{2} time; n^{2} communication for every processor

Phase 2 (round r)

p_{i} updates $X[i, j, \ell]$ for all $1 \leq j \leq n ; 1 \leq \ell \bmod 2^{r}=1$
$n \cdot n / 2^{r}$ time; no communication

Phase 3

p_{i} writes i-th row into $C[i, j]$'s.

What happens if we have n processors?

Phase 1

p_{i} computes $X[i, j, \ell]=A[i, \ell] \cdot B[\ell, j]$ for all $1 \leq j, \ell \leq n$
n^{2} time; n^{2} communication for every processor

Phase 2 (round r)

p_{i} updates $X[i, j, \ell]$ for all $1 \leq j \leq n ; 1 \leq \ell \bmod 2^{r}=1$
$n \cdot n / 2^{r}$ time; no communication

Phase 3

p_{i} writes i-th row into $C[i, j]$'s.
n time; n communication

Alternative Algorithm

Split matrix into blocks of size $n^{2 / 3} \times n^{2 / 3}$.

$A_{1,1}$	$A_{1,2}$	$A_{1,3}$	$A_{1,4}$
$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	$A_{2,4}$
$A_{3,1}$	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$
$A_{4,1}$	$A_{4,2}$	$A_{4,3}$	$A_{4,4}$

$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$
$B_{2,1}$	$B_{2,2}$	$B_{2,3}$	$B_{2,4}$
$B_{3,1}$	$B_{3,2}$	$B_{3,3}$	$B_{3,4}$
$B_{4,1}$	$B_{4,2}$	$B_{4,3}$	$B_{4,4}$

$=$| $C_{1,1}$ | $C_{1,2}$ | $C_{1,3}$ | $C_{1,4}$ |
| :--- | :--- | :--- | :--- |
| $C_{2,1}$ | $C_{2,2}$ | $C_{2,3}$ | $C_{2,4}$ |
| $C_{3,1}$ | $C_{3,2}$ | $C_{3,3}$ | $C_{3,4}$ |
| $C_{4,1}$ | $C_{4,2}$ | $C_{4,3}$ | $C_{4,4}$ |

Alternative Algorithm

Split matrix into blocks of size $n^{2 / 3} \times n^{2 / 3}$.

$A_{1,1}$	$A_{1,2}$	$A_{1,3}$	$A_{1,4}$
$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	$A_{2,4}$
$A_{3,1}$	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$
$A_{4,1}$	$A_{4,2}$	$A_{4,3}$	$A_{4,4}$

$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$
$B_{2,1}$	$B_{2,2}$	$B_{2,3}$	$B_{2,4}$
$B_{3,1}$	$B_{3,2}$	$B_{3,3}$	$B_{3,4}$
$B_{4,1}$	$B_{4,2}$	$B_{4,3}$	$B_{4,4}$

$=$| $C_{1,1}$ | $C_{1,2}$ | $C_{1,3}$ | $C_{1,4}$ |
| :--- | :--- | :--- | :--- |
| $C_{2,1}$ | $C_{2,2}$ | $C_{2,3}$ | $C_{2,4}$ |
| $C_{3,1}$ | $C_{3,2}$ | $C_{3,3}$ | $C_{3,4}$ |
| $C_{4,1}$ | $C_{4,2}$ | $C_{4,3}$ | $C_{4,4}$ |

Note that $C_{i, j}=\sum_{\ell} A_{i, \ell} B_{\ell, j}$.

Alternative Algorithm

Split matrix into blocks of size $n^{2 / 3} \times n^{2 / 3}$.

$A_{1,1}$	$A_{1,2}$	$A_{1,3}$	$A_{1,4}$
$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	$A_{2,4}$
$A_{3,1}$	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$
$A_{4,1}$	$A_{4,2}$	$A_{4,3}$	$A_{4,4}$

$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$
$B_{2,1}$	$B_{2,2}$	$B_{2,3}$	$B_{2,4}$
$B_{3,1}$	$B_{3,2}$	$B_{3,3}$	$B_{3,4}$
$B_{4,1}$	$B_{4,2}$	$B_{4,3}$	$B_{4,4}$

$=$| $C_{1,1}$ | $C_{1,2}$ | $C_{1,3}$ | $C_{1,4}$ |
| :--- | :--- | :--- | :--- |
| $C_{2,1}$ | $C_{2,2}$ | $C_{2,3}$ | $C_{2,4}$ |
| $C_{3,1}$ | $C_{3,2}$ | $C_{3,3}$ | $C_{3,4}$ |
| $C_{4,1}$ | $C_{4,2}$ | $C_{4,3}$ | $C_{4,4}$ |

Note that $C_{i, j}=\sum_{\ell} A_{i, \ell} B_{\ell, j}$.
Now we have the same problem as before but $n^{\prime}=n^{1 / 3}$ and a single multiplication costs time $\mathcal{O}\left(\left(n^{2 / 3}\right)^{3}\right)=\mathcal{O}\left(n^{2}\right)$. An addition costs $n^{4 / 3}$.

Alternative Algorithm

Split matrix into blocks of size $n^{2 / 3} \times n^{2 / 3}$.

$A_{1,1}$	$A_{1,2}$	$A_{1,3}$	$A_{1,4}$
$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	$A_{2,4}$
$A_{3,1}$	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$
$A_{4,1}$	$A_{4,2}$	$A_{4,3}$	$A_{4,4}$

$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$
$B_{2,1}$	$B_{2,2}$	$B_{2,3}$	$B_{2,4}$
$B_{3,1}$	$B_{3,2}$	$B_{3,3}$	$B_{3,4}$
$B_{4,1}$	$B_{4,2}$	$B_{4,3}$	$B_{4,4}$

$=$| $C_{1,1}$ | $C_{1,2}$ | $C_{1,3}$ | $C_{1,4}$ |
| :--- | :--- | :--- | :--- |
| $C_{2,1}$ | $C_{2,2}$ | $C_{2,3}$ | $C_{2,4}$ |
| $C_{3,1}$ | $C_{3,2}$ | $C_{3,3}$ | $C_{3,4}$ |
| $C_{4,1}$ | $C_{4,2}$ | $C_{4,3}$ | $C_{4,4}$ |

Note that $C_{i, j}=\sum_{\ell} A_{i, \ell} B_{\ell, j}$.
Now we have the same problem as before but $n^{\prime}=n^{1 / 3}$ and a single multiplication costs time $\mathcal{O}\left(\left(n^{2 / 3}\right)^{3}\right)=\mathcal{O}\left(n^{2}\right)$. An addition costs $n^{4 / 3}$.
work for multiplications: $\mathcal{O}\left(n^{2} \cdot\left(n^{\prime}\right)^{3}\right)=\mathcal{O}\left(n^{3}\right)$

Alternative Algorithm

Split matrix into blocks of size $n^{2 / 3} \times n^{2 / 3}$.

$A_{1,1}$	$A_{1,2}$	$A_{1,3}$	$A_{1,4}$
$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	$A_{2,4}$
$A_{3,1}$	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$
$A_{4,1}$	$A_{4,2}$	$A_{4,3}$	$A_{4,4}$

$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$
$B_{2,1}$	$B_{2,2}$	$B_{2,3}$	$B_{2,4}$
$B_{3,1}$	$B_{3,2}$	$B_{3,3}$	$B_{3,4}$
$B_{4,1}$	$B_{4,2}$	$B_{4,3}$	$B_{4,4}$

$=$| $C_{1,1}$ | $C_{1,2}$ | $C_{1,3}$ | $C_{1,4}$ |
| :--- | :--- | :--- | :--- |
| $C_{2,1}$ | $C_{2,2}$ | $C_{2,3}$ | $C_{2,4}$ |
| $C_{3,1}$ | $C_{3,2}$ | $C_{3,3}$ | $C_{3,4}$ |
| $C_{4,1}$ | $C_{4,2}$ | $C_{4,3}$ | $C_{4,4}$ |

Note that $C_{i, j}=\sum_{\ell} A_{i, \ell} B_{\ell, j}$.
Now we have the same problem as before but $n^{\prime}=n^{1 / 3}$ and a single multiplication costs time $\mathcal{O}\left(\left(n^{2 / 3}\right)^{3}\right)=\mathcal{O}\left(n^{2}\right)$. An addition costs $n^{4 / 3}$.
work for multiplications: $\mathcal{O}\left(n^{2} \cdot\left(n^{\prime}\right)^{3}\right)=\mathcal{O}\left(n^{3}\right)$
work for additions: $\mathcal{O}\left(n^{4 / 3} \cdot\left(n^{\prime}\right)^{3}\right)=\mathcal{O}\left(n^{3}\right)$

Alternative Algorithm

Split matrix into blocks of size $n^{2 / 3} \times n^{2 / 3}$.

$A_{1,1}$	$A_{1,2}$	$A_{1,3}$	$A_{1,4}$
$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	$A_{2,4}$
$A_{3,1}$	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$
$A_{4,1}$	$A_{4,2}$	$A_{4,3}$	$A_{4,4}$

$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$
$B_{2,1}$	$B_{2,2}$	$B_{2,3}$	$B_{2,4}$
$B_{3,1}$	$B_{3,2}$	$B_{3,3}$	$B_{3,4}$
$B_{4,1}$	$B_{4,2}$	$B_{4,3}$	$B_{4,4}$

$=$| $C_{1,1}$ | $C_{1,2}$ | $C_{1,3}$ | $C_{1,4}$ |
| :--- | :--- | :--- | :--- |
| $C_{2,1}$ | $C_{2,2}$ | $C_{2,3}$ | $C_{2,4}$ |
| $C_{3,1}$ | $C_{3,2}$ | $C_{3,3}$ | $C_{3,4}$ |
| $C_{4,1}$ | $C_{4,2}$ | $C_{4,3}$ | $C_{4,4}$ |

Note that $C_{i, j}=\sum_{\ell} A_{i, \ell} B_{\ell, j}$.
Now we have the same problem as before but $n^{\prime}=n^{1 / 3}$ and a single multiplication costs time $\mathcal{O}\left(\left(n^{2 / 3}\right)^{3}\right)=\mathcal{O}\left(n^{2}\right)$. An addition costs $n^{4 / 3}$.
work for multiplications: $\mathcal{O}\left(n^{2} \cdot\left(n^{\prime}\right)^{3}\right)=\mathcal{O}\left(n^{3}\right)$
work for additions: $\mathcal{O}\left(n^{4 / 3} \cdot\left(n^{\prime}\right)^{3}\right)=\mathcal{O}\left(n^{3}\right)$ time: $\mathcal{O}\left(n^{2}\right)+\log n^{\prime} \cdot \mathcal{O}\left(n^{4 / 3}\right)=\mathcal{O}\left(n^{2}\right)$

Alternative Algorithm

The communication cost is only $\mathcal{O}\left(n^{4 / 3} \log n^{\prime}\right)$ as a processor in the original problem touches at most $\log n$ entries of the matrix.

Alternative Algorithm

The communication cost is only $\mathcal{O}\left(n^{4 / 3} \log n^{\prime}\right)$ as a processor in the original problem touches at most $\log n$ entries of the matrix.

Each entry has size $\mathcal{O}\left(n^{4 / 3}\right)$.

Alternative Algorithm

The communication cost is only $\mathcal{O}\left(n^{4 / 3} \log n^{\prime}\right)$ as a processor in the original problem touches at most $\log n$ entries of the matrix.

Each entry has size $\mathcal{O}\left(n^{4 / 3}\right)$.
The algorithm exhibits less parallelism but still has optimum work/runtime for just n processors.

Alternative Algorithm

The communication cost is only $\mathcal{O}\left(n^{4 / 3} \log n^{\prime}\right)$ as a processor in the original problem touches at most $\log n$ entries of the matrix.

Each entry has size $\mathcal{O}\left(n^{4 / 3}\right)$.
The algorithm exhibits less parallelism but still has optimum work/runtime for just n processors.
much, much better in practise

