
3 Introduction

Parallel Computing

A parallel computer is a collection of processors usually of the

same type, interconnected to allow coordination and exchange

of data.

The processors are primarily used to jointly solve a given

problem.

Distributed Systems

A set of possibly many different types of processors are

distributed over a larger geographic area.

Processors do not work on a single problem.

Some processors may act in a malicous way.

PA

© Harald Räcke 12



Cost measures

How do we evaluate sequential algorithms?

ñ time efficiency

ñ space utilization

ñ energy consumption

ñ programmability

ñ . . .

Asymptotic bounds (e.g., for running time) often give a good

indication on the algorithms performance on a wide variety of

machines.

PA 3 Introduction

© Harald Räcke 13



Cost measures

How do we evaluate parallel algorithms?

ñ time efficiency

ñ space utilization

ñ energy consumption

ñ programmability

ñ communication requirement

ñ . . .

Problems

ñ performance (e.g. runtime) depends on problem size n and

on number of processors p
ñ statements usually only hold for restricted types of parallel

machine as parallel computers may have vastly different

characteristics (in particular w.r.t. communication)



Speedup

Suppose a problem P has sequential complexity T∗(n), i.e.,

there is no algorithm that solves P in time o(T∗(n)).

Definition 1

The speedup Sp(n) of a parallel algorithm A that requires time

Tp(n) for solving P with p processors is defined as

Sp(n) = T
∗(n)
Tp(n)

.

Clearly, Sp(n) ≤ p. Goal: obtain Sp(n) ≈ p.

It is common to replace T∗(n) by the time bound of the best

known sequential algorithm for P !

PA 3 Introduction

© Harald Räcke 15



Efficiency

Definition 2

The efficiency of a parallel algorithm A that requires time Tp(n)
when using p processors on a problem of size n is

Ep(n) = T1(n)
pTp(n)

.

Ep(n) ≈ 1 indicates that the algorithm is running roughly p
times faster with p processors than with one processor.

Note that Ep(n) ≤ T1(n)
pT∞(n) . Hence, the efficiency goes down

rapidly if p ≥ T1(n)/T∞(n).

Disadvantage: cost-measure does not relate to the optimum

sequential algorithm.

PA 3 Introduction

© Harald Räcke 16



Parallel Models — Requirements

Simplicity

A model should allow to easily analyze various performance

measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily

implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful

performance estimates.

A real satisfactory model does not exist!

PA 3 Introduction

© Harald Räcke 17



DAG model — computation graph

ñ nodes represent operations (single instructions or larger

blocks)

ñ edges represent dependencies (precedence constraints)

ñ closely related to circuits; however there exist many

different variants

ñ branching instructions cannot be modelled

ñ completely hardware independent

ñ scheduling is not defined

Often used for automatically parallelizing numerical

computations.

PA 3 Introduction

© Harald Räcke 18



Example: Addition

+

+

+

A1 A2

+

A3 A4

+

+

A5 A6

+

A7 A8

A1 +

A2

+

A3

+

A4

+

A5

+

A6

+

A7

+

A8

Here, vertices without incoming edges correspond to input data.

The graph can be viewed as a data flow graph.

PA 3 Introduction

© Harald Räcke 19



DAG model — computation graph

The DAG itself is not a complete algorithm. A scheduling

implements the algorithm on a parallel machine, by assigning a

time-step tv and a processor pv to every node.

Definition 3

A scheduling of a DAG G = (V , E) on p processors is an

assignment of pairs (tv , pv) to every internal node v ∈ V , s.t.,

ñ pv ∈ {1, . . . , p}; tv ∈ {1, . . . , T}
ñ tu = tv ⇒ pu ≠ pv
ñ (u,v) ∈ E ⇒ tv ≥ tu + 1

where a non-internal node x (an input node) has tx = 0.

T is the length of the schedule.

PA 3 Introduction

© Harald Räcke 20



DAG model — computation graph

The parallel complexity of a DAG is defined as

Tp(n) = min
schedule S

{T(S)} .

T1(n): #internal nodes in DAG

T∞(n): diameter of DAG

Clearly,
Tp(n) ≥ T∞(n)
Tp(n) ≥ T1(n)/p

Lemma 4

A schedule with length O(T1(n)/p + T∞(n)) can be found easily.

Lemma 5

Finding an optimal schedule is in general NP-complete.



Note that the DAG model as defined is a non-uniform model of

computation.

In principle, there could be a different DAG for every input size

n.

An algorithm (e.g. for a RAM) must work for every input size and

must be of finite description length.

Hence, specifying a different DAG for every n has more

expressive power.

Also, this is not really a complete model, as the operations

allowed in a DAG node are not clearly defined.

PA 3 Introduction

© Harald Räcke 22



PRAM Model

Global Shared Memory

P1 P2 P3 P4 P5 P6 P7 P8

All processors are synchronized.

In every round a processor can:

ñ read a register from global memory into local memory

ñ do a local computation à la RAM

ñ write a local register into global memory

PA 3 Introduction

© Harald Räcke 23



PRAM Model

Every processor executes the same program.

However, the program has access to two special variables:

ñ p: total number of processors

ñ id ∈ {1, . . . , p}: the id of the current processor

The following (stupid) program copies the content of the global

register x[1] to registers x[2] . . . x[p].

Algorithm 1 copy
1: if id = 1 then round ← 1

2: while round ≤ p and id = round do

3: x[id + 1]← x[id]
4: round ← round + 1

PA 3 Introduction

© Harald Räcke 24



PRAM Model
ñ processors can effectively execute different code because of

branching according to id

ñ however, not arbitrarily; still uniform model of computation

Often it is easier to explicitly define which parts of a program

are executed in parallel:

Algorithm 2 sum

1: // computes sum of x[1] . . . x[p]
2: // red part is executed only by processor 1

3: r ← 1

4: while 2r ≤ p do

5: for id mod 2r = 1 pardo

6: // only executed by processors whose id matches

7: x[id] = x[id]+ x[id + 2r−1]
8: r ← r + 1

9: return x[1]



Different Types of PRAMs

Simultaneous Access to Shared Memory:

ñ EREW PRAM:

simultaneous access is not allowed

ñ CREW PRAM:

concurrent read accesses to the same location are allowed;

write accesses have to be exclusive

ñ CRCW PRAM:
concurrent read and write accesses allowed

ñ commom CRCW PRAM
all processors writing to x[i] must write same value

ñ arbitrary CRCW PRAM
values may be different; an arbitrary processor succeeds

ñ priority CRCW PRAM
values may be different; processor with smallest id succeeds

PA 3 Introduction

© Harald Räcke 26



Algorithm 3 sum

1: // computes sum of x[1] . . . x[p]
2: r ← 1

3: while 2r ≤ p do

4: for id mod 2r = 1 pardo

5: x[id] = x[id]+ x[id + 2r−1]
6: r ← r + 1

7: return x[1]

The above is an EREW PRAM algorithm.

On a CREW PRAM we could replace Line 4 by

for 1 ≤ id ≤ p pardo

PA 3 Introduction

© Harald Räcke 27



PRAM Model — remarks

ñ similar to a RAM we either need to restrict the size of values
that can be stored in registers, or we need to have a
non-uniform cost model for doing a register manipulation
(cost for manipulating x[i] is proportional to the bit-length
of the largest number that is ever being stored in x[i])

ñ in this lecture: uniform cost model but we are not
exploiting the model

ñ global shared memory is very unrealistic in practise as

uniform access to all memory locations does not exist

ñ global synchronziation is very unrealistic; in real parallel

machines a global synchronization is very costly

ñ model is good for understanding basic parallel

mechanisms/techniques but not for algorithm development

ñ model is good for lower bounds

PA 3 Introduction

© Harald Räcke 28



Network of Workstations — NOWs

ñ interconnection network represented by a graph G = (V , E)
ñ each v ∈ V represents a processor

ñ an edge {u,v} ∈ E represents a two-way communication

link between processors u and v
ñ network is asynchronous

ñ all coordination/communiation has to be done by explicit

message passing

PA 3 Introduction

© Harald Räcke 29



Typical Topologies

1 2 3 4 5 6 7 8

linear array

1

2

3

4

5

6

7

8

cycle, ring

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

mesh/grid

000

100

010

110

001

101

011

111

000

100

010

110

001

101

011

111

hypercube

PA 3 Introduction

© Harald Räcke 30



Network of Workstations — NOWs
Computing the sum on a d-dimensional hypercube. Note that

x[0] . . . x[2d − 1] are stored at the individual nodes.

Processors are numbered consecutively starting from 0

Algorithm 4 sum

1: // computes sum of x[0] . . . x[2d − 1]
2: r ← 1

3: while 2r ≤ 2d do // p = 2d

4: if id mod 2r = 0 then

5: temp ← receive(id + 2r−1)
6: x[id] = x[id]+ temp

7: if id mod 2r = 2r−1 then

8: send(x[id], id − 2r−1)
9: r ← r + 1

10: if id = 0 then return x[id]



Network of Workstations — NOWs

Remarks

ñ One has to ensure that at any point in time there is at most

one active communication along a link

ñ There also exist synchronized versions of the model, where

in every round each link can be used once for

communication

ñ In particular the asynchronous model is quite realistic

ñ Difficult to develop and analyze algorithms as a lot of low

level communication has to be dealt with

ñ Results only hold for one specific topology and cannot be

generalized easily

PA 3 Introduction

© Harald Räcke 32



Performance of PRAM algorithms

Suppose that we can solve an instance of a problem with size n
with P(n) processors and time T(n).

We call C(n) = T(n) · P(n) the time-processor product or the

cost of the algorithm.

The following statements are equivalent

ñ P(n) processors and time O(T(n))
ñ O(C(n)) cost and time O(T(n))
ñ O(C(n)/p) time for any number p ≤ P(n) processors

ñ O(C(n)/p + T(n)) for any number p of processors

PA 3 Introduction

© Harald Räcke 33



Performance of PRAM algorithms

Suppose we have a PRAM algorithm that takes time T(n) and

work W(n), where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at

most

bW(n)/pc + T(n)
parallel steps on p processors.

Idea:

ñ Wi(n) denotes operations in parallel step i, 1 ≤ i ≤ T(n)
ñ simulate each step in dWi(n)/pe parallel steps

ñ then we have∑
i
dWi(n)/pe ≤

∑
i

(bWi(n)/pc + 1
) ≤ bW(n)/pc + T(n)



Performance of PRAM algorithms

Why nearly always?

We need to assign processors to operations.

ñ every processor pi needs to know whether it should be

active

ñ in case it is active it needs to know which operations to

perform

design algorithms for an arbitrary number of processors;

keep total time and work low

PA 3 Introduction

© Harald Räcke 35



Optimal PRAM algorithms

Suppose the optimal sequential running time for a problem is

T∗(n).

We call a PRAM algorithm for the same problem work optimal if

its work W(n) fulfills

W(n) = Θ(T∗(n))

If such an algorithm has running time T(n) it has speedup

Sp(n) = Ω
(

T∗(n)
T∗(n)/p + T(n)

)
= Ω

(
pT∗(n)

T∗(n)+ pT(n)

)
= Ω(p)

for p = O(T∗(n)/T(n)).

PA 3 Introduction

© Harald Räcke 36



This means by improving the time T(n), (while using same

work) we improve the range of p, for which we obtain optimal

speedup.

We call an algorithm worktime (WT) optimal if T(n) cannot be

asymptotically improved by any work optimal algorithm.

PA 3 Introduction

© Harald Räcke 37



Example

Algorithm for computing the sum has work W(n) = O(n).
optimal

T(n) = O(logn). Hence, we achieve an optimal speedup for

p = O(n/ logn).

One can show that any CREW PRAM requires Ω(logn) time to

compute the sum.

PA 3 Introduction

© Harald Räcke 38



Communication Cost

When we differentiate between local and global memory we can

analyze communication cost.

We define the communication cost of a PRAM algorithm as the

worst-case traffic between the local memory of a processor and

the global shared memory.

Important criterion as communication is usually a major

bottleneck.

PA 3 Introduction

© Harald Räcke 39



Communication Cost

Algorithm 5 MatrixMult(A, B,n)
1: Input: n×n matrix A and B; n = 2k

2: Output: C = AB
3: for 1 ≤ i, j, ` ≤ n pardo

4: X[i, j, `]← A[i, `] · B[`, j]
5: for r ← 1 to logn
6: for 1 ≤ i, j ≤ n; ` mod 2r = 1 pardo

7: X[i, j, `]← X[i, j, `]+X[i, j, ` + 2r−1]
8: C[i, j]← X[i, j, `]

On n3 processors this algorithm runs in time O(logn).
It uses n3 multiplications and O(n3) additions.

PA 3 Introduction

© Harald Räcke 40



What happens if we have n processors?

Phase 1

pi computes X[i, j, `] = A[i, `] · B[`, j] for all 1 ≤ j, ` ≤ n
n2 time; n2 communication for every processor

Phase 2 (round r)

pi updates X[i, j, `] for all 1 ≤ j ≤ n; 1 ≤ ` mod 2r = 1

n ·n/2r time; no communication

Phase 3

pi writes i-th row into C[i, j]’s.

n time; n communication

PA 3 Introduction

© Harald Räcke 41



Alternative Algorithm

Split matrix into blocks of size n2/3 ×n2/3.

A B· C=

A1,1 B1,1 C1,1

A2,1 B2,1 C2,1

A3,1 B3,1 C3,1

A4,1 B4,1 C4,1

A1,2 B1,2 C1,2

A2,2 B2,2 C2,2

A3,2 B3,2 C3,2

A4,2 B4,2 C4,2

A1,3 B1,3 C1,3

A2,3 B2,3 C2,3

A3,3 B3,3 C3,3

A4,3 B4,3 C4,3

A1,4 B1,4 C1,4

A2,4 B2,4 C2,4

A3,4 B3,4 C3,4

A4,4 B4,4 C4,4

Note that Ci,j =
∑
`Ai,`B`,j.

Now we have the same problem as before but n′ = n1/3 and a

single multiplication costs time O((n2/3)3) = O(n2). An addition

costs n4/3.

work for multiplications: O(n2 · (n′)3) = O(n3)
work for additions: O(n4/3 · (n′)3) = O(n3)
time: O(n2)+ logn′ · O(n4/3) = O(n2)



Alternative Algorithm

The communication cost is only O(n4/3 logn′) as a processor in

the original problem touches at most logn entries of the matrix.

Each entry has size O(n4/3).

The algorithm exhibits less parallelism but still has optimum

work/runtime for just n processors.

much, much better in practise

PA 3 Introduction

© Harald Räcke 43


	Introduction

