Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3^p -ary tree.

- each internal node represents a set of p comparisons btw.
 p pairs (not necessarily distinct)
- a leaf v corresponds to a unique permutation that is valid for all the comparisons on the path from the root to v
- the number of parallel steps is the height of the tree

Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3^p -ary tree.

- each internal node represents a set of p comparisons btw.
 p pairs (not necessarily distinct)
- ightharpoonup a leaf v corresponds to a unique permutation that is valid for all the comparisons on the path from the root to v
- the number of parallel steps is the height of the tree

Parallel Comparison Tree Model

A parallel comparison tree (with parallelism p) is a 3^p -ary tree.

- each internal node represents a set of p comparisons btw.
 p pairs (not necessarily distinct)
- ightharpoonup a leaf v corresponds to a unique permutation that is valid for all the comparisons on the path from the root to v
- the number of parallel steps is the height of the tree

A comparison PRAM is a PRAM where we can only compare the input elements;

- we cannot view them as strings
- we cannot do calculations on them

A lower bound for the comparison tree with parallelism p directly carries over to the comparison PRAM with p processors.

A comparison PRAM is a PRAM where we can only compare the input elements;

- we cannot view them as strings
- we cannot do calculations on them

A lower bound for the comparison tree with parallelism p directly carries over to the comparison PRAM with p processors.

A comparison PRAM is a PRAM where we can only compare the input elements;

- we cannot view them as strings
- we cannot do calculations on them

A lower bound for the comparison tree with parallelism p directly carries over to the comparison PRAM with p processors.

A comparison PRAM is a PRAM where we can only compare the input elements;

- we cannot view them as strings
- we cannot do calculations on them

A lower bound for the comparison tree with parallelism $\it p$ directly carries over to the comparison PRAM with $\it p$ processors.

A Lower Bound for Searching

Theorem 1

Given a sorted table X of n elements and an element y. Searching for y in X requires $\Omega(\frac{\log n}{\log(p+1)})$ steps in the parallel comparsion tree with parallelism p < n.

Theorem 2

A graph G with m edges and n vertices has an independent set on at least $\frac{n^2}{2m+n}$ vertices.

base case
$$(n = 1)$$

▶ The only graph with one vertex has m = 0, and an independent set of size 1.

Theorem 2

A graph G with m edges and n vertices has an independent set on at least $\frac{n^2}{2m+n}$ vertices.

base case (n = 1)

▶ The only graph with one vertex has m = 0, and an independent set of size 1.

Theorem 2

A graph G with m edges and n vertices has an independent set on at least $\frac{n^2}{2m+n}$ vertices.

base case (n = 1)

▶ The only graph with one vertex has m = 0, and an independent set of size 1.

- Let G be a graph with n+1 vertices, and v a node with minimum degree (d).
- ▶ Let *G'* be the graph after deleting *v* and its adjacent vertices in *G*.
- n' = n (d+1)
- ▶ $m' \le m \frac{d}{2}(d+1)$ as we remove d+1 vertices, each with degree at least d
- ▶ In G' there is an independent set of size $((n')^2/(2m'+n'))$.
- lacktriangle By adding v we obtain an indepent set of size

$$1 + \frac{(n')^2}{2m' + n'} \ge \frac{n^2}{2m + n}$$

- Let G be a graph with n + 1 vertices, and v a node with minimum degree (d).
- Let G' be the graph after deleting v and its adjacent vertices in G.
- n' = n (d+1)
- ▶ $m' \le m \frac{d}{2}(d+1)$ as we remove d+1 vertices, each with degree at least d
- In G' there is an independent set of size $((n')^2/(2m'+n'))$
- lacktriangle By adding v we obtain an indepent set of size

$$1 + \frac{(n')^2}{2m' + n'} \ge \frac{n^2}{2m + n}$$

- Let G be a graph with n + 1 vertices, and v a node with minimum degree (d).
- ▶ Let G' be the graph after deleting v and its adjacent vertices in G.
- n' = n (d+1)
- ▶ $m' \le m \frac{d}{2}(d+1)$ as we remove d+1 vertices, each with degree at least d
- In G' there is an independent set of size $((n')^2/(2m'+n'))$
- lacktriangle By adding v we obtain an indepent set of size

$$1 + \frac{(n')^2}{2m' + n'} \ge \frac{n^2}{2m + n}$$

- Let G be a graph with n+1 vertices, and v a node with minimum degree (d).
- Let G' be the graph after deleting v and its adjacent vertices in G.
- n' = n (d+1)
- $m' \le m \frac{d}{2}(d+1)$ as we remove d+1 vertices, each with degree at least d
- ▶ In G' there is an independent set of size $((n')^2/(2m'+n'))$.
- lacktriangle By adding v we obtain an indepent set of size

$$1 + \frac{(n')^2}{2m' + n'} \ge \frac{n^2}{2m + n}$$

- Let G be a graph with n + 1 vertices, and v a node with minimum degree (d).
- ▶ Let *G'* be the graph after deleting *v* and its adjacent vertices in *G*.
- n' = n (d+1)
- ► $m' \le m \frac{d}{2}(d+1)$ as we remove d+1 vertices, each with degree at least d
- ▶ In G' there is an independent set of size $((n')^2/(2m'+n'))$.
- **By** adding v we obtain an indepent set of size

$$1 + \frac{(n')^2}{2m' + n'} \ge \frac{n^2}{2m + n}$$

- Let G be a graph with n + 1 vertices, and v a node with minimum degree (d).
- Let G' be the graph after deleting v and its adjacent vertices in G.
- n' = n (d+1)
- $m' \le m \frac{d}{2}(d+1)$ as we remove d+1 vertices, each with degree at least d
- In G' there is an independent set of size $((n')^2/(2m'+n'))$.
- lacktriangle By adding v we obtain an indepent set of size

$$1 + \frac{(n')^2}{2m' + n'} \ge \frac{n^2}{2m + n}$$

Theorem 3

Computing the maximum of n elements in the comparison tree requires $\Omega(\log \log n)$ steps whenever the degree of parallelism is $p \le n$.

Theorem 4

Computing the maximum of n elements requires $\Omega(\log \log n)$ steps on the comparison PRAM with n processors.

Theorem 3

Computing the maximum of n elements in the comparison tree requires $\Omega(\log\log n)$ steps whenever the degree of parallelism is $p \le n$.

Theorem 4

Computing the maximum of n elements requires $\Omega(\log\log n)$ steps on the comparison PRAM with n processors.

An adversary can specify the input such that at the end of the (i+1)-st step the maximum lies in a set C_{i+1} of size s_{i+1} such that

▶ no two elements of C_{i+1} have been compared

$$> s_{i+1} \ge \frac{s_i^2}{2p + c_i}$$

An adversary can specify the input such that at the end of the (i+1)-st step the maximum lies in a set C_{i+1} of size s_{i+1} such that

- ▶ no two elements of C_{i+1} have been compared
- $> s_{i+1} \ge \frac{s_i^2}{2p + c_i}$

Theorem 5

The selection problem requires $\Omega(\log n/\log\log n)$ steps on a comparison PRAM.

not proven yet

The (k,s)-merging problem, asks to merge k pairs of subsequences A^1, \ldots, A^k and B^1, \ldots, B^k where we know that all elements in $A^i \cup B^i$ are smaller than elements in $A^j \cup B^j$ for (i < j).

Lemma 6

Suppose we are given a parallel comparison tree with parallelism p to solve the (k,s) merging problem. After the first step an adversary can specify the input such that an arbitrary (k',s') merging problem has to be solved, where

$$k' = \frac{3}{4} \sqrt{pk}$$

$$s' = \frac{s}{4} \sqrt{\frac{k}{p}}$$

Partition A^is and B^is into blocks of length roughly s/ℓ ; hence ℓ blocks.

Define an $\ell \times \ell$ binary matrix M^i , where $M^i_{\chi y}$ is 0 iff the parallel step **did not** compare an element from A^i_{χ} with an element from B^i_{γ} .

The matrix has $2\ell - 1$ diagonals.

Partition A^is and B^is into blocks of length roughly s/ℓ ; hence ℓ blocks.

Define an $\ell \times \ell$ binary matrix M^i , where $M^i_{\chi y}$ is 0 iff the parallel step **did not** compare an element from A^i_χ with an element from B^i_γ .

The matrix has $2\ell - 1$ diagonals.

Partition A^is and B^is into blocks of length roughly s/ℓ ; hence ℓ blocks.

Define an $\ell \times \ell$ binary matrix M^i , where $M^i_{\mathcal{X}\mathcal{Y}}$ is 0 iff the parallel step **did not** compare an element from $A^i_{\mathcal{X}}$ with an element from $B^i_{\mathcal{Y}}$.

The matrix has $2\ell-1$ diagonals.

Pair all $A_{j+d_i}^i, B_j^i$, (where $d_i \in \{-(\ell-1), \dots, \ell-1\}$ specifies the chosen diagonal) for which the entry in M^i is zero.

We can choose value s.t. elements for the j-th pair along the diagonal are **all** smaller than for the (j+1)-th pair.

Hence, we get a (k', s') problem.

Pair all $A^i_{j+d_i}, B^i_j$, (where $d_i \in \{-(\ell-1), \dots, \ell-1\}$ specifies the chosen diagonal) for which the entry in M^i is zero.

We can choose value s.t. elements for the j-th pair along the diagonal are **all** smaller than for the (j + 1)-th pair.

Hence, we get a (k', s') problem

Pair all $A^i_{j+d_i}, B^i_j$, (where $d_i \in \{-(\ell-1), \dots, \ell-1\}$ specifies the chosen diagonal) for which the entry in M^i is zero.

We can choose value s.t. elements for the j-th pair along the diagonal are **all** smaller than for the (j+1)-th pair.

Hence, we get a (k', s') problem

Pair all $A^i_{j+d_i}, B^i_j$, (where $d_i \in \{-(\ell-1), \dots, \ell-1\}$ specifies the chosen diagonal) for which the entry in M^i is zero.

We can choose value s.t. elements for the j-th pair along the diagonal are **all** smaller than for the (j+1)-th pair.

Hence, we get a (k', s') problem.

- there are $k\ell$ blocks in total
- ▶ there are $k \cdot \ell^2$ matrix entries in total
- ▶ there are at least $k \cdot \ell^2 p$ zeros.
- ightharpoonup choosing a random diagonal (same for every matrix M^i) hits at least

$$\frac{k\ell^2 - p}{2\ell - 1} \ge \frac{k\ell}{2} - \frac{p}{2\ell}$$

zeroes.

► Choosing $\ell = 2\sqrt{\frac{p}{k}}$ gives

$$k' \ge \frac{3}{4}\sqrt{pk}$$
 and $s' = \lfloor \frac{s}{\ell} \rfloor \ge \frac{s}{2\ell} = \frac{s}{4}\sqrt{\frac{k}{p}}$

where we assume $\frac{s}{p} \geq 2$.

- there are $k\ell$ blocks in total
- there are $k \cdot \ell^2$ matrix entries in total
- ▶ there are at least $k \cdot \ell^2 p$ zeros.
- ightharpoonup choosing a random diagonal (same for every matrix M^i) hits at least

$$\frac{k\ell^2 - p}{2\ell - 1} \ge \frac{k\ell}{2} - \frac{p}{2\ell}$$

zeroes.

► Choosing $\ell = 2\sqrt{\frac{p}{k}}$ gives

$$k' \ge \frac{3}{4}\sqrt{pk}$$
 and $s' = \lfloor \frac{s}{\ell} \rfloor \ge \frac{s}{2\ell} = \frac{s}{4}\sqrt{\frac{k}{p}}$

where we assume $\frac{s}{p} \geq 2$.

- there are $k\ell$ blocks in total
- there are $k \cdot \ell^2$ matrix entries in total
- there are at least $k \cdot \ell^2 p$ zeros.
- ightharpoonup choosing a random diagonal (same for every matrix M^i) hits at least

$$\frac{k\ell^2 - p}{2\ell - 1} \ge \frac{k\ell}{2} - \frac{p}{2\ell}$$

zeroes.

► Choosing $\ell = 2\sqrt{\frac{p}{k}}$ gives

$$k' \ge \frac{3}{4}\sqrt{pk}$$
 and $s' = \lfloor \frac{s}{\ell} \rfloor \ge \frac{s}{2\ell} = \frac{s}{4}\sqrt{\frac{k}{p}}$

where we assume $\frac{s}{\theta} \geq 2$.

- there are $k\ell$ blocks in total
- there are $k \cdot \ell^2$ matrix entries in total
- there are at least $k \cdot \ell^2 p$ zeros.
- ightharpoonup choosing a random diagonal (same for every matrix M^i) hits at least

$$\frac{k\ell^2 - p}{2\ell - 1} \ge \frac{k\ell}{2} - \frac{p}{2\ell}$$

zeroes.

• Choosing $\ell = 2\sqrt{\frac{p}{k}}$ gives

$$k' \geq \frac{3}{4}\sqrt{pk}$$
 and $s' = \lfloor \frac{s}{\ell} \rfloor \geq \frac{s}{2\ell} = \frac{s}{4}\sqrt{\frac{k}{p}}$

where we assume $\frac{s}{\overline{v}} \geq 2$.

- there are $k\ell$ blocks in total
- there are $k \cdot \ell^2$ matrix entries in total
- there are at least $k \cdot \ell^2 p$ zeros.
- ightharpoonup choosing a random diagonal (same for every matrix M^i) hits at least

$$\frac{k\ell^2 - p}{2\ell - 1} \ge \frac{k\ell}{2} - \frac{p}{2\ell}$$

zeroes.

• Choosing $\ell = 2\sqrt{\frac{p}{k}}$ gives

$$k' \ge \frac{3}{4}\sqrt{pk}$$
 and $s' = \lfloor \frac{s}{\ell} \rfloor \ge \frac{s}{2\ell} = \frac{s}{4}\sqrt{\frac{k}{p}}$

where we assume $\frac{s}{\ell} \geq 2$.

Lemma 7

Let T(k, s, p) be the number of parallel steps required on a comparison tree to solve the (k, s) merging problem. Then

$$T(k, p, s) \ge \frac{1}{4} \log \frac{\log \frac{p}{k}}{\log \frac{p}{ks}}$$

provided that $p \ge 2ks$ and $p \le ks^2/4$

$$T(k', s', p) \ge \frac{1}{4} \log \frac{\log \frac{p}{k'}}{\log \frac{p}{k's'}}$$

$$T(k', s', p) \ge \frac{1}{4} \log \frac{\log \frac{p}{k'}}{\log \frac{p}{k's'}}$$
$$\ge \frac{1}{4} \log \frac{\log \frac{4}{3} \sqrt{\frac{p}{k}}}{\log \frac{16}{3} \frac{p}{ks}}$$

$$T(k', s', p) \ge \frac{1}{4} \log \frac{\log \frac{p}{k'}}{\log \frac{p}{k's'}}$$
$$\ge \frac{1}{4} \log \frac{\log \frac{4}{3} \sqrt{\frac{p}{k}}}{\log \frac{16}{3} \frac{p}{ks}}$$
$$\ge \frac{1}{4} \log \frac{\frac{1}{2} \log \frac{p}{k}}{7 \log \frac{p}{ks}}$$

$$T(k', s', p) \ge \frac{1}{4} \log \frac{\log \frac{p}{k'}}{\log \frac{p}{k's'}}$$

$$\ge \frac{1}{4} \log \frac{\log \frac{4}{3} \sqrt{\frac{p}{k}}}{\log \frac{16}{3} \frac{p}{ks}}$$

$$\ge \frac{1}{4} \log \frac{\frac{1}{2} \log \frac{p}{k}}{7 \log \frac{p}{ks}}$$

$$\ge \frac{1}{4} \log \frac{\log \frac{p}{k}}{\log \frac{p}{ks}} - 1$$

Assume that

$$T(k', s', p) \ge \frac{1}{4} \log \frac{\log \frac{p}{k'}}{\log \frac{p}{k's'}}$$

$$\ge \frac{1}{4} \log \frac{\log \frac{4}{3} \sqrt{\frac{p}{k}}}{\log \frac{16}{3} \frac{p}{ks}}$$

$$\ge \frac{1}{4} \log \frac{\frac{1}{2} \log \frac{p}{k}}{7 \log \frac{p}{ks}}$$

$$\ge \frac{1}{4} \log \frac{\log \frac{p}{k}}{\log \frac{p}{ks}} - 1$$

This gives the induction step.

Theorem 8

Merging requires at least $\Omega(\log \log n)$ time on a CRCW PRAM with n processors.

