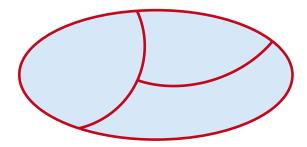
In the following we design oblivious algorithms that obtain close to optimum congestion (no bounds on dilation).

We always assume that we route a flow (instead of packet routing).

We can also assume this is a randomized path-selection scheme that guarantees that the expected load on an edge is close to the optimum congestion.

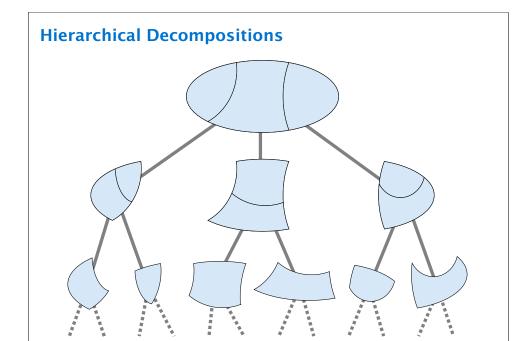
270

Hierarchical Decompositions & Oblivious Routing



define multicommodity flow problem for every cluster:

 every border edge of a sub-cluster injects one unit and distributes it evenly to all others



Formally

- cluster S partitioned into clusters S_1, \ldots, S_ℓ
- weight $w_S(v)$ of node v is total capacity of edges connecting v to nodes in other sub-clusters or outside of S
- demand for pair $(x, y) \in S \times S$

$$\frac{w_S(x)w_S(y)}{w_S(S)}$$

- gives flow problem for every cluster
- if every flow problem can be solved with congestion *C* then there is an oblivious routing scheme that always obtains congestion

$$\mathcal{O}(\text{height}(T) \cdot C \cdot C_{\mathsf{opt}}(\mathcal{P}))$$

Oblivious Routing Scheme

Sparsest Cut

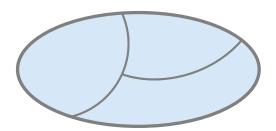
Definition 1

Given a multicommodity flow problem $\mathcal P$ with demands D_i between source-target pairs s_i, t_i . A sparsest cut for $\mathcal P$ is a set S that minimizes

$$\Phi(S) = \frac{\text{capacity}(S, V \setminus S)}{\text{demand}(S, V \setminus S)}$$

demand($S, V \setminus S$) is the demand that crosses cut S. capacity($S, V \setminus S$) is the capacity across the cut.

Oblivious Routing Scheme — A Single Cluster S



Input:

Messages from sub-clusters have been routed to random border-edges of corresponding sub-cluster.

- 1. forward messages to random intra sub-cluster edge
- **2.** delete messages for which source and target are in *S*
- 3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times

Sparsest Cut

Clearly,

$$1/\Phi_{\mathsf{min}} \leq \mathsf{C}_{\mathsf{opt}}(\mathcal{P})$$

For single-commodity flows we have $1/\Phi_{\text{min}} = C_{opt}(\mathcal{P}).$

In general we have

$$\frac{1}{\Phi_{\mathsf{min}}} \le \mathsf{C}_{\mathsf{opt}}(\mathcal{P}) \le \mathcal{O}(\log n) \cdot \frac{1}{\Phi_{\mathsf{min}}}$$
.

This is known as an approximate maxflow mincut theorem.

285

LP Formulation

Maximum Concurrent Flow:

$$\begin{array}{|c|c|c|c|c|}\hline \max & \lambda & \\ \text{s.t.} & \forall i & \sum_{p \in P_{s_i,t_i}} f_p & \geq & D_i \\ & \forall e \in E & \sum_{p:e \in p} f_p & \leq & c(e) \\ & & f_p, \lambda & \geq & 0 \\ \hline \end{array}$$

 $\mathcal{P}_{s,t}$ is the set of path that connect s and t.

The Dual:

$$\begin{array}{lll} \min & \sum_{e} c(e) \ell(e) \\ \text{s.t.} & \forall p \in \mathcal{P} & \sum_{e \in P} \ell(e) & \geq & \text{dist}_i \\ & \sum_{i} D_i \text{dist}_i & \geq & 1 \\ & & \text{dist}_i, \ell(e) & \geq & 0 \end{array}$$

12 Oblivious Routing via Hierarchical Decompositions

287

289

Duality

Primal:

$$\begin{array}{cccc}
\max & c^t x \\
\text{s.t.} & Ax & \leq b \\
& x & \geq 0
\end{array}$$

Dual:

$$\begin{array}{ll}
\min & b^t y \\
\text{s.t.} & A^t y \ge c \\
& y \ge 0
\end{array}$$

PA © Harald Räcke

12 Oblivious Routing via Hierarchical Decompositions

288

Metric Embeddings

Definition 2

A metric (V,d) is an ℓ_1 -embeddable metric if there exists a function $f: V \to \mathbb{R}^m$ for some m such that

$$d(u, v) = ||f(u) - f(v)||_1$$

Definition 3

A metric (V, d) embeds into ℓ_1 with distortion α if there exists a function $f: V \to \mathbb{R}^m$ for some m such that

$$\frac{1}{\alpha} \|f(u) - f(v)\|_{1} \le d(u, v) \le \|f(u) - f(v)\|$$

Theorem 4

Any metric (V,d) on |V|=n points is embeddable into ℓ_1 with distortion $O(\log n)$.

Theorem 5

For any flow problem P one can obtain at least a throughput of $\Phi_{min}/\log n$, where Φ_{min} denotes the sparsity of the sparsest cut. *In other words*

$$C_{opt}(\mathcal{P}) \leq \mathcal{O}(\log n) \frac{1}{\Phi_{min}}$$

12 Oblivious Routing via Hierarchical Decompositions

291

293

Fréchet Embedding

Given a set A of points we define a mapping

$$f(x) := d(x, A)$$

The mapping f is contracting this means

$$||f(x) - f(y)|| \le d(x, y)$$

LP Formulation

The optimum throughput is given by

$$\begin{array}{ll} \min & \sum_{e} c(e)d(e) \\ \text{s.t.} & d \text{ metric} \\ & \sum_{i} D_{i}d(s_{i},t_{i}) \geq 1 \end{array}$$

or

$$\begin{split} C_{\mathsf{opt}}(\mathcal{P}) &= \frac{\sum_{i} D_{i} d(s_{i}, t_{i})}{\sum_{e=(u,v)} c(e) d(u,v)} \\ &\leq \alpha \frac{\sum_{i} D_{i} \cdot \|f(s_{i}) - f(t_{i})\|}{\sum_{e=(u,v)} c(e) \cdot \|f(u) - f(v)\|} \\ &= \alpha \frac{\sum_{i} D_{i} \cdot \sum_{S} y_{S} \chi_{S}(s_{i}, t_{i})}{\sum_{e=(u,v)} c(e) \cdot \sum_{S} y_{S} \chi_{S}(u,v)} \\ &= \alpha \frac{\sum_{S} y_{S} \sum_{i} D_{i} \chi_{S}(s_{i}, t_{i})}{\sum_{S} y_{S} \sum_{e=(u,v)} c(e) \chi_{S}(u,v)} \\ &\leq \alpha \max_{S} \frac{\sum_{i} D_{i} \chi_{S}(s_{i}, t_{i})}{\sum_{e=(u,v)} c(e) \chi_{S}(u,v)} = \alpha \cdot \frac{1}{\Phi_{\mathsf{min}}} \end{split}$$

Suppose we have a probability distribution p over sets A_1,\ldots,A_k :

Then define $f: V \to \mathbb{R}^k$ by

$$f(x)_i: V = p(A_i) \cdot d(x, A_i)$$

f is still contracting.

	_	
We use a probability distribution ever sets such that the		
We use a probability distribution over sets such that the expected distance between \boldsymbol{x} and \boldsymbol{y} is at least		
$d(x,y)/\mathcal{O}(\log n)$		
w(N,) // = (15g, v)		
PA 12 Oblivious Routing via Hierarchical Decompositions © Harald Räcke 295		
	_	