
In the following we design oblivious algorithms that obtain close

to optimum congestion (no bounds on dilation).

We always assume that we route a flow (instead of packet

routing).

We can also assume this is a randomized path-selection scheme

that guarantees that the expected load on an edge is close to the

optimum congestion.
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Hierarchical Decompositions
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Hierarchical Decompositions & Oblivious Routing

define multicommodity flow problem for every cluster:

ñ every border edge of a sub-cluster injects one unit and

distributes it evenly to all others



Formally

ñ cluster S partitioned into clusters S1, . . . , S`
ñ weight wS(v) of node v is total capacity of edges

connecting v to nodes in other sub-clusters or outside of S
ñ demand for pair (x,y) ∈ S × S

wS(x)wS(y)
wS(S)

ñ gives flow problem for every cluster

ñ if every flow problem can be solved with congestion C then

there is an oblivious routing scheme that always obtains

congestion

O(height(T) · C · Copt(P))

PA 12 Oblivious Routing via Hierarchical Decompositions

© Harald Räcke 282/295



Oblivious Routing Scheme

x

rx x

x x x z x x



Oblivious Routing Scheme

x

rx x

x x x z x x



Oblivious Routing Scheme

x

rx x

x x x z x x



Oblivious Routing Scheme

x

rx x

x x x z x x



Oblivious Routing Scheme

x

rx x

x x x z x x



Oblivious Routing Scheme — A Single Cluster S

Input:

Messages from sub-clusters have been routed to random

border-edges of corresponding sub-cluster.

1. forward messages to random intra sub-cluster edge

2. delete messages for which source and target are in S

3. forward remaining messages to random border edge

all performed by applying flow problem for cluster several times
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Sparsest Cut

Definition 1

Given a multicommodity flow problem P with demands Di
between source-target pairs si, ti. A sparsest cut for P is a set S
that minimizes

Φ(S) = capacity(S, V \ S)
demand(S, V \ S) .

demand(S, V \ S) is the demand that crosses cut S.

capacity(S, V \ S) is the capacity across the cut.
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Sparsest Cut

Clearly,

1/Φmin ≤ Copt(P)

For single-commodity flows we have 1/Φmin = Copt(P).

In general we have

1
Φmin

≤ Copt(P) ≤ O(logn) · 1
Φmin

.

This is known as an approximate maxflow mincut theorem.
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LP Formulation

Maximum Concurrent Flow:

max λ
s.t. ∀i

∑
p∈Psi,ti fp ≥ Di

∀e ∈ E
∑
p:e∈p fp ≤ c(e)
fp, λ ≥ 0

Ps,t is the set of path that connect s and t.

The Dual:
min

∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1
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p∈Psi,ti fp ≥ Di

∀e ∈ E
∑
p:e∈p fp ≤ c(e)
fp, λ ≥ 0

Ps,t is the set of path that connect s and t.

The Dual:

min
∑
e c(e)`(e)

s.t. ∀p ∈ P
∑
e∈P `(e) ≥ disti∑
iDidisti ≥ 1

disti, `(e) ≥ 0
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Duality

Primal:
max ctx
s.t. Ax ≤ b

x ≥ 0

Dual:
min bty
s.t. Aty ≥ c

y ≥ 0
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Metric Embeddings

Definition 2

A metric (V ,d) is an `1-embeddable metric if there exists a

function f : V → Rm for some m such that

d(u,v) = ‖f(u)− f(v)‖1

Definition 3

A metric (V ,d) embeds into `1 with distortion α if there exists a

function f : V → Rm for some m such that

1
α
‖f(u)− f(v)‖1 ≤ d(u,v) ≤ ‖f(u)− f(v)‖
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Theorem 4

Any metric (V ,d) on |V | = n points is embeddable into `1 with

distortion O(logn).
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Theorem 5

For any flow problem P one can obtain at least a throughput of

Φmin/ logn, where Φmin denotes the sparsity of the sparsest cut.

In other words

Copt(P) ≤ O(logn)
1
Φmin
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LP Formulation
The optimum throughput is given by

min
∑
e c(e)d(e)

s.t. d metric∑
iDid(si, ti) ≥ 1

or

Copt(P)

=
∑
iDid(si, ti)∑

e=(u,v) c(e)d(u,v)

≤ α
∑
iDi · ‖f(si)− f(ti)‖∑

e=(u,v) c(e) · ‖f(u)− f(v)‖

= α
∑
iDi ·

∑
S γSχS(si, ti)∑

e=(u,v) c(e) ·
∑
S γSχS(u,v)

= α
∑
S γS

∑
iDiχS(si, ti)∑

S γS
∑
e=(u,v) c(e)χS(u,v)

≤ αmax
S

∑
iDiχS(si, ti)∑

e=(u,v) c(e)χS(u,v)
= α · 1

Φmin
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Fréchet Embedding

Given a set A of points we define a mapping

f(x) := d(x,A)

The mapping f is contracting this means

‖f(x)− f(y)‖ ≤ d(x,y)
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Suppose we have a probability distribution p over sets

A1, . . . , Ak:

Then define f : V → Rk by

f(x)i : V = p(Ai) · d(x,Ai)

f is still contracting.
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We use a probability distribution over sets such that the

expected distance between x and y is at least

d(x,y)/O(logn)
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