Simulations between PRAMs

Theorem 1

We can simulate a *p*-processor priority CRCW PRAM on a *p*-processor EREW PRAM with slowdown $O(\log p)$.

🛛 💾 🗋 🕼 © Harald Räcke

Simulations between PRAMs

Theorem 3

We can simulate a *p*-processor priority CRCW PRAM on a *p*-processor common CRCW PRAM with slowdown $\mathcal{O}(\frac{\log p}{\log \log p})$.

PA © Harald Räcke

10 Simulations between PRAMs

168

Simulations between PRAMs

Theorem 2

We can simulate a *p*-processor priority CRCW PRAM on a $p \log p$ -processor common CRCW PRAM with slowdown O(1).

PA © Harald Räcke

10 Simulations between PRAMs

Simulations between PRAMs Theorem 4 We can simulate a p-processor priority CRCW PRAM on a p-processor arbitrary CRCW PRAM with slowdown $O(\log \log p)$.

169

Lower Bounds for the CREW PRAM

Ideal PRAM:

- every processor has unbounded local memory
- in each step a processor reads a global variable
- then it does some (unbounded) computation on its local memory
- then it writes a global variable

הר] הח] PA	10 Simulations between PRAMs	
UUU © Harald Räcke		172

Lower Bounds for the CREW PRAM

Definition 6

PA © Harald Räcke

An input index i affects a processor P at time t on some input I if the state of P at time t differs between inputs I and I(i) (i-th bit flipped).

10 Simulations between PRAMs

 $K(P, t, I) = \{i \mid i \text{ affects } P \text{ at time } t \text{ on input } I\}$

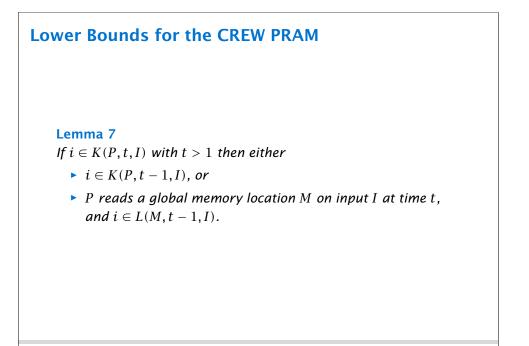
Lower Bounds for the CREW PRAM

Definition 5

An input index i affects a memory location M at time t on some input I if the content of M at time t differs between inputs I and I(i) (*i*-th bit flipped).

 $L(M, t, I) = \{i \mid i \text{ affects } M \text{ at time } t \text{ on input } I\}$

PA © Harald Räcke 10 Simulations between PRAMs



174

173

Lower Bounds for the CREW PRAM

Lemma 8

If $i \in L(M, t, I)$ with t > 1 then either

- A processor writes into M at time t on input I and $i \in K(P, t, I)$, or
- ▶ No processor writes into M at time t on input I and
 - *either* $i \in L(M, t 1, I)$
 - or a processor P writes into M at time t on input I(i).

	10 Simulations between PRAMs	
U L U G Harald Räcke		176

haca	case	(+	- A	١.
Dase.	Lase	11	– v	1.

- No index can influence the local memory/state of a processor before the first step (hence |K(P, 0, I)| = k₀ = 0).
- ► Initially every index in the input affects exactly one memory location. Hence $|L(M, 0, I)| = 1 = \ell_0$.

Let $k_0 = 0$, $\ell_0 = 1$ and define $k_{t+1} = k_t + \ell_t$ and $\ell_{t+1} = 3k_t + 4\ell_t$ Lemma 9 $|K(P,t,I)| \le k_t$ and $|L(M,t,I)| \le \ell_t$ for any $t \ge 0$ PA © Harald Räcke 10 Simulations between PRAMs 177

induction step $(t \rightarrow t + 1)$:

 $K(P, t + 1, I) \subseteq K(P, t, I) \cup L(M, t, I)$, where *M* is the location read by *P* in step t + 1.

Hence,

PA ©Harald Räcke

 $\begin{aligned} |K(P,t+1,I)| &\leq |K(P,t,I)| + |L(M,t,I)| \\ &\leq k_t + \ell_t \end{aligned}$

10 Simulations between PRAMs

induction step $(t \rightarrow t + 1)$:

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

$$\begin{split} |L(M,t+1,I)| &\leq |K(P,t+1,I)| \\ &\leq k_t + \ell_t \\ &\leq 3k_t + \ell_t = \ell_{t+1} \end{split}$$

PA ©Harald Räcke	10 Simulations between PRAMs	

Y(M, t + 1, I) is the set of indices u_j that cause some processor P_{w_j} to write into M at time t + 1 on input I.

Fact:

For all pairs u_s , u_t with $P_{w_s} \neq P_{w_t}$ either $u_s \in K(P_{w_t}, t+1, I(u_t))$ or $u_t \in K(P_{w_s}, t+1, I(u_s))$.

Otherwise, P_{w_t} and P_{w_s} would both write into M at the same time on input $I(u_s)(u_t)$.

(11, 1 + 1, 1)|

b location M at time t + 1 on input I

Case 2:

No processor P writes into location M at time t + 1 on input I.

An index *i* affects *M* at time t + 1 iff *i* affects *M* at time *t* or some processor *P* writes into *M* at t + 1 on I(i).

 $L(M, t+1, I) \subseteq L(M, t, I) \cup Y(M, t+1, I)$

Y(M, t + 1, I) is the set of indices u_j that cause some processor P_{w_i} to write into M at time t + 1 on input I.

|--|

Let $U = \{u_1, ..., u_r\}$ denote all indices that cause some processor to write into M.

Let $V = \{(I(u_1), P_{w_1}), \dots\}.$

We set up a bipartite graph between U and V, such that $(u_i, (I(u_j), P_{w_j})) \in E$ if u_i affects P_{w_j} at time t + 1 on input $I(u_j)$.

Each vertex $(I(u_j), P_{w_j})$ has degree at most k_{t+1} as this is an upper bound on indices that can influence a processor P_{w_j} .

Hence, $|E| \leq r \cdot k_{t+1}$.

PA © Harald Räcke

180

181

For an index u_j there can be at most k_{t+1} indices u_i with $P_{w_i} = P_{w_j}$.

Hence, there must be at least $\frac{1}{2}r(r-k_{t+1})$ pairs u_i, u_j with $P_{w_i} \neq P_{w_j}$.

Each pair introduces at least one edge.

Hence,

$$|E| \ge \frac{1}{2}r(r-k_{t+1})$$

This gives $r \leq 3k_{t+1} \leq 3k_t + 3\ell_t$

	10 Simulations between PRAMs	
🛛 🕒 🛛 🖉 🖾 🖾 🖾 🖾 🖉 🖉		184

$$\begin{pmatrix} k_{t+1} \\ \ell_{t+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} k_t \\ \ell_t \end{pmatrix} \qquad \begin{pmatrix} k_0 \\ \ell_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Eigenvalues:

$$\lambda_1 = \frac{1}{2}(5 + \sqrt{21})$$
 and $\lambda_2 = \frac{1}{2}(5 - \sqrt{21})$

Eigenvectors:

$$v_1 = \begin{pmatrix} 1\\ -(1-\lambda_1) \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ -(1-\lambda_2) \end{pmatrix}$$
$$v_1 = \begin{pmatrix} 1\\ \frac{3}{2} + \frac{1}{2}\sqrt{21} \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ \frac{3}{2} - \frac{1}{2}\sqrt{21} \end{pmatrix}$$

Recall that $L(M, t + 1, i) \subseteq L(M, t, i) \cup Y(M, t + 1, I)$ $|L(M, t + 1, i)| \leq 3k_t + 4\ell_t$

$$v_{1} = \begin{pmatrix} 1\\ \frac{3}{2} + \frac{1}{2}\sqrt{21} \end{pmatrix} \text{ and } v_{2} = \begin{pmatrix} 1\\ \frac{3}{2} - \frac{1}{2}\sqrt{21} \end{pmatrix}$$
$$\begin{pmatrix} k_{0}\\ \ell_{0} \end{pmatrix} = \begin{pmatrix} 0\\ 1 \end{pmatrix} = \frac{1}{\sqrt{21}}(v_{1} - v_{2})$$
$$\begin{pmatrix} k_{t}\\ \ell_{t} \end{pmatrix} = \frac{1}{\sqrt{21}}\left(\lambda_{1}^{t}v_{1} - \lambda_{2}^{t}v_{2}\right)$$

Solving the recurrence gives

$$k_t = \frac{\lambda_1^t}{\sqrt{21}} - \frac{\lambda_2^t}{\sqrt{21}}$$
$$\ell_t = \frac{3 + \sqrt{21}}{2\sqrt{21}}\lambda_1^t + \frac{-3 + \sqrt{21}}{2\sqrt{21}}\lambda_2^t$$
with $\lambda_1 = \frac{1}{2}(5 + \sqrt{21})$ and $\lambda_2 = \frac{1}{2}(5 - \sqrt{21})$.

הח (הח) PA	10 Simulations between PRAMs	
UUU © Harald Räcke		188

A Lower Bound for the EREW PRAM

Definition 11 (Zero Counting Problem)

Given a monotone binary sequence $x_1, x_2, ..., x_n$ determine the index i such that $x_i = 0$ and $x_{i+1} = 1$.

We show that this problem requires $\Omega(\log n - \log p)$ steps on a p-processor EREW PRAM.

Theorem 10

The following problems require logarithmic time on a CREW PRAM.

- Sorting a sequence of x_1, \ldots, x_n with $x_i \in \{0, 1\}$
- Computing the maximum of n inputs
- Computing the sum $x_1 + \cdots + x_n$ with $x_i \in \{0, 1\}$

	10 Simulations between PRAMs	
UUU© Harald Räcke		189

Let I_i be the input with i zeros folled by n - i ones.

Index *i* affects processor *P* at time *t* if the state in step *t* is differs between I_{i-1} and I_i .

Index *i* affects location *M* at time *t* if the content of *M* after step *t* differs between inputs I_{i-1} and I_i .

Lemma 12

If $i \in K(P, t)$ then either

- ▶ $i \in K(P, t 1)$, or
- ▶ *P* reads some location *M* on input I_i (and, hence, also on I_{i-1}) at step *t* and $i \in L(M, t 1)$

	10 Simulations between PRAMs	
UUU©Harald Räcke		192

Define

$$C(t) = \sum_{P} |K(P,t)| + \sum_{M} \max\{0, |L(M,t)| - 1\}$$

10 Simulations between PRAMs

 $C(T) \ge n, C(0) = 0$

Claim: $C(t) \le 6C(t-1) + 3|P|$

PA © Harald Räcke

This gives $C(T) \leq \frac{6^T - 1}{5} 3|P|$ and hence $T = \Omega(\log n - \log |P|)$.

Lemma 13

If $i \in L(M, t)$ then either

- ▶ $i \in L(M, t 1)$, or
- Some processor P writes M at step t on input I_i and $i \in K(P, t)$.
- Some processor P writes M at step t on input I_{i-1} and $i \in K(P, t)$.

	10 Simulations between PRAMs	
🛛 🕒 🛛 🖉 🖾 🖾 🖾 🖾 🖉 🖉		193

For an index i to newly appear in L(M, t) some processor must write into M on either input I_i or I_{i-1} .

Hence, any index in K(P, t) can at most generate two new indices in L(M, t).

This means that the number of new indices in any set L(M, t) (over all M) is at most

$$2\sum_{P}|K(P,t)|$$

194

10 Simulations between PRAMs

Hence,

$$\sum_M |L(M,t)| \leq \sum_M |L(M,t-1)| + 2\sum_P |K(P,t)|$$

We can assume wlog. that $L(M, t - 1) \subseteq L(M, t)$. Then

$$\sum_{M} \max\{0, |L(M,t)| - 1\} \le \sum_{M} \max\{0, |L(M,t-1)| - 1\} + 2\sum_{P} |K(P,t)|$$

PA ©Harald Räcke	10 Simulations between PRAMs	196

Hence,

$$\begin{split} \sum_{P} |K(P,t)| &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} |L(M,t-1)| \\ &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + J_{t} \\ &\leq 2 \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + |P| \\ &\leq 2 \sum_{P} |K(P,t-1)| + \sum_{M} \max\{0, |L(M,t-1)|-1\} + |P| \end{split}$$

Recall

$$\sum_{M} \max\{0, |L(M,t)| - 1\} \le \sum_{M} \max\{0, |L(M,t-1)| - 1\} + 2\sum_{P} |K(P,t)|$$

PA © Harald Räcke 10 Simulations between PRAMs

198

For an index i to newly appear in K(P, t), P must read a memory location M with $i \in L(M, t)$ on input I_i (and also on input I_{i-1}).

Since we are in the EREW model at most one processor can do so in every step.

Let J(i, t) be memory locations read in step t on input I_i , and let $J_t = \bigcup_i J(i, t)$.

$$\sum_{P} |K(P,t)| \le \sum_{P} |K(P,t-1)| + \sum_{M \in J_t} |L(M,t-1)|$$

Over all inputs I_i a processor can read at most |K(P, t - 1)| + 1 different memory locations (why?).

	10 Simulations between PRAMs	
🛛 🛄 🛛 🖉 🕼 🖓 Harald Räcke		197

